
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

An Object-oriented Approach to the Modeling and Visualization of An Object-oriented Approach to the Modeling and Visualization of

Breast Cancer Tumors Breast Cancer Tumors

Bruce C. Jenkins

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons

Recommended Citation Recommended Citation
Jenkins, Bruce C., "An Object-oriented Approach to the Modeling and Visualization of Breast Cancer
Tumors" (2000). Theses and Dissertations. 4810.
https://scholar.afit.edu/etd/4810

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/899?utm_source=scholar.afit.edu%2Fetd%2F4810&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4810?utm_source=scholar.afit.edu%2Fetd%2F4810&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

AN OBJECT-ORIENTED APPROACH TO
THE MODELING AND VISUALIZATION OF
EARLY-STAGE BREAST CANCER TUMORS

THESIS

Bruce C Jenkins, Captain, USAF

AFIT/GOA/ENS/00M-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ssx<

www.manaraa.com

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE

AN OBJECT-ORIENTED APPROACH TO THE MODELING AND
VISUALIZATION OF EARLY-STAGE BREAST CANCER TUMORS

6. AUTHOR(S)

Bruce C Jenkins, Captain, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/HEPA
Attn: D. Wilson
2800 Q Street, Building 824
WPAFB OH 45433 DSN: 785-3122

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOA/ENS/00M-04

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Dr. Kenneth W Bauer, Jr., ENS, DSN: 785-3636, ext. 1234 / Kenneth.Bauer@afit.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

ABSTRACT [Maximum 200 Words)

Great strides have been made in controlling the progression of breast cancer, but medical professionals continue to rely primarily upon traditional
mammography for early detection. Enhancing breast cancer detection capabilities—and thus reducing tumor detection time—should result in a reduction in mortality
rates. The detection capabilities of mammography may be enhanced through improved modeling and visualization techniques.

This thesis is an extension of initial research conducted at the Air Force Institute of Technology. Previous efforts focused on developing a mathematical
model for simulating the growth of cancer within unconstrained 3-dimensional space. The research also explored the behavior of the model as it interacts with
simulated breast tissue structures.

This effort implements improvements suggested by the previous research and explores alternative modeling approaches. These approaches are implemented
using object-oriented software engineering techniques within the Java programming environment. The model is first replicated in unconstrained 2- and 3-dimensional
space, and then embellished to more closely model the semi-autonomous behavior of cancerous cells. We determine that Java provides a suitable environment for
simulating tumor growth, and this study concludes with a model built upon a rule set for controlling cell behavior.

14. SUBJECT TERMS
Cancer, Breast Cancer, Tumor, Modeling, Object Oriented, Java, Simulation, Visualization

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
147

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

www.manaraa.com

The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U. S. Government.

www.manaraa.com

AFTT/GOA/ENS/00M-04

AN OBJECT-ORIENTED APPROACH TO THE MODELING AND
VISUALIZATION OF EARLY-STAGE BREAST CANCER TUMORS

THESIS

Presented to the Faculty

Department of Operations Research

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operational Analysis

Bruce C Jenkins, B.S.

Captain, USAF

March 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

www.manaraa.com

AFTC7GOA/ENS/00M-04

AN OBJECT-ORIENTED APPROACH TO THE MODELING AND
VISUALIZATION OF EARLY-STAGE BREAST CANCER TUMORS

Bruce C Jenkins, B.S.
Captain, USAF

Approved:

Kenneth W. Bauer, Jr., Professor (Chairman) date

O. Miller, Lt Col, USAF date

www.manaraa.com

Acknowledgements

I would like to thank Dr Kenneth Bauer for seeming to know when and how to

push my buttons in order to keep me moving not simply forward, but in the proper

direction as well. This thesis was yet another valuable AFIT learning experience; the

lessons learned will benefit me for years to come. I would also like to thank Lt Col J.O.

Miller for his humor and encouragement. Our weekly thesis meetings would not have

been the same without his presence. Thanks also to Capt C. Brian Bassham, whose

previous work led me on this path. His continuing research in the area of modeling and

visualization proved an effective motivator for the task that lay before me.

Finally, I would like to thank those who made the greatest sacrifice while I

pursued yet another goal: my dedicated wife, Susan, and our loving daughter, Kayla. To

these two I am forever indebted. Their support is unwavering; their patience, unending...

I love you both.

Bruce Jenkins

in

www.manaraa.com

List of Figures

Figure 3-1: The incremental model (Source: Pressman, 1997) 23
Figure 4-1: TumorOl Class Diagram 29
Figure 4-2: Cancer cell movement within the 2-D tumor growth space 32
Figure 4-3: Cell vector before first population doubling 34
Figure 4-4: Cell vector after first population doubling (step 4) 35
Figure 4-5: Cell vector after second population doubling (step 7) 36
Figure 4-6: TumorOl Object relationship diagram 37
Figure 4-7: Tumor02 Class Diagram 39
Figure 4-8: Tumor02 Object Relationship Diagram 42
Figure 4-9: Tumor03 Class Diagram 46
Figure 4-10: Tumor03 Object Relationship Diagram 53
Figure 4-11: Tumor03_l modifications to CancerSimApplet class 56
Figure 4-12: Tumor04 Class Diagram - 57
Figure 4-13: Tumor04_2 Class Diagram 59
Figure 4-14: CancerSim Control Panel (Tumor04, Tumor04_l) 64
Figure 4-15: Tumor04_l Object Relationship Diagram 65
Figure 4-16: Simulation flow chart (Tumor04_2) ;67
Figure 5-1: TumorOl population doubling (expected) 70
Figure 5-2: TumorOl population doubling (actual) 70
Figure 5-3: TumorOl results 71

Figure 5-4: Tumor02 results [left] compared to Bassham's Tumor5 72
Figure 5-5: Tumor03 results • 73
Figure 5-6: Tumor03_l density projections along the x-, y-, and z-axes 75
Figure 5-7: Tumor04 GUI and DOS window 76
Figure 5-8: Tumor04 sample DOS box output — 77
Figure 5-9: Tumor 04 [upper projections] and Bassham's Tumor3d [lower projections].78
Figure 5-10: Tumor04 simulation results 81
Figure 5-11: Tumor04_l simulation results 81
Figure 5-12: Comparison of simulation run times 83
Figure 5-13: Simulation results (Tumor04_2) 85

IV

www.manaraa.com

List of Tables

Table 2-1: Government Web resources 9
Table 2-2: University Web resources 10
Table 2-3: Breast Cancer Staging (Source: The Breast Cancer Digest) 11
Table 3-1: Bassham's tumor growth algorithm 23
Table 4-1: Attribute List (TumorOl.Tumor Applet 1) 30
Table 4-2: Attribute List (Tumor02.CancerSimApplet) 40
Table 4-3: Attribute List (Tumor03.CancerSimApplet) 49
Table 4-4: Lookup table used in class CellDirection 52
Table 4-5: CancerSim model summary 68
Table 5-1: Mean population-doubling times (in seconds) 82

www.manaraa.com

Listings

Listing 4-1: Determining cell direction in 2-D space 33
Listing 4-2: Thread Creation in Tumor03 51
Listing 4-3: Tumor Growth Algorithm in Tumor03 52
Listing 4-4: Determining the maximum contrast for a tumor projection 61
Listing 4-5: Tumor growth process for 3-D embellishments 63

VI

www.manaraa.com

Table of Contents

ACKNOWLEDGEMENTS Hi

LIST OF FIGURES iv

LIST OF TABLES v

LISTINGS vi

TABLE OF CONTENTS vii

ABSTRACT , ix

I. INTRODUCTION 1

1.1 BACKGROUND 1
1.2 STATEMENT OF THE PROBLEM 2
1.3 RESEARCH Focus 3
1.4 CONTRIBUTION OF RESEARCH 4
1.5 ASSUMPTIONS, RISKS, AND LIMITATIONS 4

II. LITERATURE REVIEW 6

2.1 INTRODUCTION 6
2.2 RELEVANT INTERNET RESOURCES 8

2.2.1 Government 8
2.2.2 Education 10
2.2.3 Other. 11

2.3 STAGES OF BREAST CANCER 11
2.4 SCREENING FOR EARLY DETECTION 12

2.4.1 Physical Examination 12
2.4.2 Mammography 13
2.4.3 Ultrasound 14
2.4.4 Magnetic Resonant Imagining (MRI) 14
2.4.5 Other Imaging Techniques 16

2.5 BREAST CANCER MODELING 16
2.5.1 Complex Adaptive Systems 16
2.5.2 Molecular 18
2.5.3 Mathematical 18
2.5.4 Other Models 19

III. METHODOLOGY 21

3.1 OVERVIEW 21
3.2 JAVA CLASS DEVELOPMENT 24
3.3 GUI DEVELOPMENT 24
3.4 EMBELLISHMENTS 25

vn

www.manaraa.com

IV. MODEL DESCRIPTIONS 26

4.1 OVERVIEW 26

4.2 TWO-DIMENSIONAL TUMOR MODEL 27
4.2.1 Overview ^7
4.2.2 Class Development and Modeling Diagrams 28
4.2.3 Operational Description 30
4.2.4 Embellishments 3#
4.2.5 Summary 43

4.3 THREE-DIMENSIONAL TUMOR MODEL 44
4.3.1 Overview 44
4.3.2 Class Development and Modeling Diagrams 46
4.3.3 Operational Description 49
4.3.4 Embellishments 54
4.3.5 Summary 68

V. ANALYSIS AND RECOMMENDATIONS 69

5.1 OVERVIEW 69

5.2 TWO-DIMENSIONAL TUMOR MODELS 69
5.3 THREE-DIMENSIONAL TUMOR MODELS 72
5.4 CONCLUSION 86

5.5 RECOMMENDATIONS 87

APPENDIX A: JAVA SOURCE CODE - TUMOR04 90

APPENDIX B: JAVA SOURCE CODE - TUMOR042 106

GLOSSARY 124

BD3LIOGRAPHY 131

VITA 134

vui

www.manaraa.com

AFIT/GOR/ENS/00M-04

Abstract

Great strides have been made in controlling the progression of breast

cancer, but medical professionals continue to rely primarily upon traditional

mammography for early detection. Enhancing breast cancer detection capabilities—and

thus reducing tumor detection time—should result in a reduction in mortality rates. The

detection capabilities of mammography may be enhanced through improved modeling

and visualization techniques.

This thesis is an extension of initial research conducted at the Air Force

Institute of Technology. Previous efforts focused on developing a mathematical model

for simulating the growth of cancer within unconstrained 3-dimensional space. The

research also explored the behavior of the model as it interacts with simulated breast

tissue structures.

This effort implements improvements suggested by the previous research

and explores alternative modeling approaches. These approaches are implemented using

object-oriented software engineering techniques within the Java programming

environment. The model is first replicated in unconstrained 2- and 3-dimensional space,

and then embellished to more closely model the semi-autonomous behavior of cancerous

cells. This study concludes with a model built upon a rule set for controlling cell

behavior.

IX

www.manaraa.com

AN OBJECT-ORIENTED APPROACH TO THE MODELING AND

VISUALIZATION OF EARLY-STAGE BREAST CANCER TUMORS

I. Introduction

1.1 Background

Breast cancer continues to be the leading cause of cancer deaths among American

women. This fact remains, despite a significant amount of medical, scientific, and

financial resources having been applied to finding a cure for cancer. Nearly 10 years ago

there was a refocusing of federal cancer research efforts by the Secretary of Health,

Public Health Service (PHS). The Secretary directed the PHS to develop what is known

as the National Strategic Plan for the Early Detection and Control of Breast and Cervical

Cancers. The National Strategic Plan provides a framework for national health

organizations to coordinate their research efforts. This framework in turn focuses

attention on the specific health needs of American Women (U.S. Department of Health

and Human Services [USDHHS], 1993: 1).

Generally, the plan is designed to present strategies for implementing research

agencies to use as a model. Specifically, the plan addresses the following issues:

Integration and Coordination, Public Education, Professional Education and Practice,

Quality Assurance for Breast Cancer Screening, Quality Assurance for Cervical Cancer

Screening, and Surveillance and Evaluation. Combined, the efforts to improve agency

coordination and quality while enhancing national education appear to have shown

positive results. In a 1998 Boston Globe article, a former National Cancer Institute (NCI)

chief speculated that breast cancer would be reduced by 30 percent over 1971 levels

www.manaraa.com

(Saltus, 1998). An increase in breast cancer awareness and medical screening alone has

produced an increase in detection, and thus an improvement in mortality rates, since 1973

(USDHHS, 1993: 5).

Even with this apparently successful effort to reduce the mortality caused by

breast cancer, relatively little research has been done on early detection of breast cancer.

By the time a cancerous tumor is physically detected, there is increased risk that the

cancer will metastasize, or spread, to other parts of the body. When tumors are too small

to be physically detected, they can be detected through mammography—essentially a

breast x-ray. Reading a mammogram is subject to error, however. An outright

misreading of the mammogram is possible, or variations in breast tissue density may

cause the tumor to be masked or otherwise hidden. If a woman's chance of surviving the

breast cancer is to be increased, these detection difficulties must be overcome.

Researchers are now attempting to enhance the effectiveness of mammography

through digital techniques (Women's Health Weekly, 1999). Digital mammography

allows for significant improvements in contrast and resolution of mammograms. In

addition to enhancements provided by digital mammography, computer software systems

have been developed to "read" an image and provide recommendations to the radiologist

(Cancer Weekly, 1999; Women's Health Weekly, 1999). Further, additional research into

magnetic resonance imaging (MRI) is being done with the expectation that the MRI can

provide a clearer, more accurate image than mammography (Chain Drug Review, 1999).

1.2 Statement of the Problem

While great strides have been made in controlling cancer's ability to progress, the

medical community continues to rely primarily upon traditional mammography or

www.manaraa.com

magnetic resonant imaging (MRI) techniques for early discovery of tumors. Enhancing

breast cancer detection capabilities—and thus reducing tumor detection time—should

result in a reduction in mortality rates. The detection capabilities of mammography may

be enhanced through improved modeling and visualization techniques.

1.3 Research Focus

This problem is an extension of the research conducted by Captain C. Brian

Bassham (GOA-99M), whose efforts focused on developing a solid mathematical model

of a cancerous growth within the female breast. Bassham identified some weaknesses in

the model, suggested several improvements, and provided examples of areas where the

modeling environment itself may be enhanced as well.

The scope of this effort, therefore, will be to build upon the model developed by

Bassham. This will be accomplished using the Java platform from Sun Microsystems.

There are several reasons for translating Bassham's model to Java: First, complete

portability of the tumor model is a very desirable property. Model portability allows for

further development beyond this research effort on virtually all computer platforms

available today, from personal computers to mainframes. The second reason for using

the Java environment is that it is a pure object-oriented (OO) language and has the power

of other OO languages, such as C++, but without the memory management pitfalls that

can hamper the debugging process. Additionally, Java3D, a sophisticated Java extension

for 3-dimensional visualization, appears to be as robust as special purpose environments,

such as the Visual Toolkit (VTK). While offering the same robustness, it exceeds the

VTK's known capabilities in that Java3D may be incorporated directly in the tumor

model. This provides not only the portability already mentioned, but dispenses with the

www.manaraa.com

requirement to manage intermediate data that is an artifact of the MatLab™/VTK model.

As a final, albeit minor, consideration, Java is not only omnipresent, it is absolutely free.

This allows anyone to contribute to this line of research with no financial investment. In

addition to the Java development kit being widely available at no cost, there are several

Java integrated development environments freely available that can streamline and

expedite the development process.

1.4 Contribution of Research

The long-term goal of this research effort is to assist medical professionals in

detecting breast cancer much earlier in the tumor growth process. The short-term results

of this effort should allow follow-on researchers to simulate the growth of a single tumor

on any computer platform supporting the Java Runtime Environment (JRE).

1.5 Assumptions, Risks, and Limitations

Since the precise cause of breast cancer is not yet known, and the behavior of

breast cancer tumors not fully understood, that we have a "reasonable" model

representation of breast cancer will be assumed. The risk with this assumption is that the

cancer cell object model may under- or over-characterizes a real-world biological cell.

This may result in a model that is too simple and lacks the characteristics necessary to

produce data in which we might have a reasonable level of confidence. On the other

hand, the model may be so complex that it simply does not work—it either produces no

data or the data cannot be interpreted.

The standard Java math libraries (classes) are assumed to be sufficiently robust

and will be adequate for the mathematical modeling of a cancer tumor. For the purpose

of simply translating the existing MatLab™ code to Java, there appears to be little risk.

www.manaraa.com

The scope of this thesis effort should prevent encountering any purely mathematical

limitations with the Java math libraries.

It must be assumed that the skills required to implement a complex mathematical

model in the Java environment will be mastered in the time allowed for this project. The

risk is only slight that any particular problem encountered cannot be resolved either in-

house or with the assistance of outside resources. In general, none of the risks outlined

above are extraordinary.

www.manaraa.com

II. Literature Review

2.1 Introduction

The amount of information available concerning breast cancer research,

prevention, and discovery on the Internet and in libraries is overwhelming. The Internet

provides the opportunity to obtain up-to-date information quickly and on a broad

category of topics. Despite this positive aspect, it is discouraging to find such a high ratio

of irrelevant material to that which is relevant. Nevertheless, the Internet proved to be an

invaluable first stop for this particular research effort. Not only is historical and

traditionally hard copy information becoming increasing available in electronic form via

the Internet, but late-breaking research and news are now widely available in readily

digestible form.

While Internet-harvested information was used extensively in the research, it is

primarily relegated to a supporting role in this thesis. Some hard copy material was

obtained from the Air Force Institute of Technology's Academic Library, but a majority

of the books and journals were found at Wright State University's Fordham Medical

Sciences and Dunbar libraries.

If there is no desire or inclination to conduct research along the path presented

here and by Bassham, but one wishes to gain an understanding of breast cancer and scope

of its impact, then two breast cancer literature resources stand out. The first reference,

The Breast Cancer Digest, contains detailed information on breast cancer, how it

develops, how it is diagnosed and treated, and lists breast cancer support services to aid

those who may be impacted by the disease. Despite the depth of its coverage, it is mostly

devoid of medical and technical terminology not familiar to the layperson. And although

www.manaraa.com

the guide itself is dated, this simply impacts the relevance of the statistics and nullifies

comments concerning recent developments in diagnosis. The second outstanding

reference is the Atlas of Breast Cancer. While this guide contains information more

technically challenging than the previous reference, it also contains a vivid pictorial of

breast cancer's victims and the results of treatment used to contain its advancement.

Combined, these two references summarize every aspect of breast cancer and ultimately

paint an explicit picture illustrating the urgency in discovering a means of preventing this

disease.

This chapter will first describe some of the Internet resources found to be timely

and relevant to this thesis. It is important to note that these particular sources most likely

can be relied up for future research or simply as points of interest. Additionally, while

tens of sites proved to be useful, only those Internet resources found to be the most useful

are included in this discussion.

After a description of the Internet resources, the causes, or contributing factors, to

breast cancer will be described. Next, some general life-cycle depictions of breast cancer

will be presented. We will subsequently review the current efforts in detecting breast

cancer at the earliest possible stages of development. Finally, some models of the

behavior of breast cancer will be described.

The reader will note that a glossary exists at the back of this thesis. While not all

glossary entries are used in this thesis, the glossary is representative of words and

terminology relavant to the medical aspect of the supporting research.

www.manaraa.com

2.2 Relevant Internet Resources

2.2.1 Government

Some of the most interesting and information-rich resources were found at Web

sites maintained by the United States federal government. The National Institute of

Health (NIH) is intended to serve in the interest of better health for all Americans. It

strives to accomplish this by conducting its own research and supporting the research of

other, non-governmental organizations. The NIH can be thought of as a national

clearinghouse for health issues, and it proved to be an excellent jumping off point for

health information resources in general and cancer related searches in particular, by way

of the National Cancer Institute (NCI). The Health Information link provides access to

numerous resources directly related to this research: full-text consumer health

publications, women's health issues, clinical trials, health literature references, as well as

"MEDLINEplus," which is claimed to be one of the largest on-line medical libraries.

The NCI maintains resources on virtually all known forms of cancer. It is

particularly useful for obtaining up-to-date press releases, which offer immediate

notification of late-breaking news that might impact the direction of research efforts

related to breast cancer. Additionally, a host of research initiatives and funding

opportunities can be obtained from this site. From the NCI's site, the next logical source

to investigate is CancerNet™. CancerNet™ is billed as a source of information for

"Health Professionals, Patients and the Public." From this location, one can obtain

cancer information applicable to the layperson, the health professional, or researchers.

Of particular interest here is the CANCERLIT® bibliographic database. The search

capabilities provided by CANCERLIT® provide an immediate jumpstart for breast cancer

www.manaraa.com

research. There is an option for limiting the search to only those records containing an

abstract. Searching on "breast cancer," for example, returned over 10,000 abstracts with

bibliographic entries from 1996 to present. A search on "breast cancer modeling"

reduced the number of potential references to just over 2,000. "Breast cancer detection"

returned nearly 3,600 references, while "breast cancer screening" provided just over

1,900 candidate references. "Mammography," "breast cancer," and "microcalcification"

also proved to be significant keywords within this extremely useful database.

Additional government Internet resources fall in the military domain. A

discovery made early in this research was at the Department of Defense Congressionally

Directed Medical Research Programs (CDMRP) site. The CDMRP is a consortium of

military, scientists, physicians, and the community, and serves as a point of convergence

for medical research. The CDMRP has numerous research programs, including breast

cancer. Only funding offered the National Cancer Institute exceeds the level of funding

for the CDMRP's breast cancer research program (BCRP). The BCRP offers a unique

perspective on breast cancer research within the Department of Defense (DoD). As

program executive, the BCRP may allocate monies for breast cancer research, and the

potential exists for funding of military research efforts. The government agencies

covered above are summarized in Table 2-1.

Table 2-1: Government Web resources

Government Agency Universal Resource Locator
CANCERLIT® http://cnetdb.nci.nih.gov/cancerlit.shtml
CancerNet™ http ://cancernet. nci.nih.eov/
Department of Defense Congressionally Directed Medical
Research Programs (CDMRP)

http://cdmrp.armv.mil/

National Cancer Institute (NCI) http://www.nci.nih.gov/
National Institute of Health (NIH) http://www.nih.gov/health/

www.manaraa.com

2.2.2 Education

Searching for literature on cancers in the medical domain returns a long list of

potential sites. Much insight into leading-edge cancer research can be garnered through a

review of the many medical research facilities in the United States. The Vanderbilt

University Medical Center provides a state-by-state listing of on-line medical schools.

Each of the 125 links in the list was visited if possible. That is, if an error did not occur

indicating the link was incorrect or the server was not available. Sites with the following

characteristics are listed Table 2-2: (1) Breast cancer was featured prominently in the

main page, (2) a "research" link from the main page led to breast cancer information, or

(3) relevant information was found with a simple "breast cancer" keyword search. The

table is a summary list of medical universities with Web sites where breast cancer

research information could be found reasonably quickly.

Table 2-2: University Web resources

University, Universal Resource Locator
Huntsman Cancer Institute at the University of
Utah

http://www.hci.utah.edu/

Johns Hopkins Breast Center (John Hopkins
University)

http://www.med.ihu.edu/breastcenter/

Loma Linda University Cancer Institute (LLUCI) http://www.llu.edu/llu/ci/professional/info.html
Olson Center for Women's Health of the
University of Nebraska Medical Center

http://www.unmc.edu/01son/brstdir.htm

Rita J. & Stanley H. Kaplan Comprehensive
Cancer Center, New York University (NYU)
School of Medicine

http://health-www.med.nyu.edu/BreastCare/

The University of Medicine and Dentistry of New
Jersey (UMDNJ) and Coriell Research Library

http://www4.umdni.edu/camlbweb/brestcan.html

University of Arkansas for Medical Sciences http://www.uams.edu/cop/rxbreastca/default.htm
University of Pennsylvania Cancer Center
(OncoLink)

http://cancer.med.upenn.edu/

Vanderbilt University Medical Center http://www.mc.vanderbilt.edu/~aubrey/medstu/medi
cal schools.html
http://www.mc.Vanderbilt.Edu/vumc/centers/cancer
/html/programs breast.html

10

www.manaraa.com

2.2.3 Other

Internet sites not falling in government, military, or educational domains include

for-profit commercial and other organizations. There were many useful sites; too many

to be listed here, in fact. Many of the Web resources not falling in the category of

government, military or educational institutes can be found through the sites listed in

Table 2-1 and Table 2-2. One site that cannot be overlooked, however, is the obvious:

the America Cancer Society. See http://www3.cancer.org/cancerinfo/load cont.asp?ct=5

for information specifically related to breast cancer.

2.3 Stages of Breast Cancer

The literature is consistent in describing the stages of breast cancer as it develops

and spreads. "Staging" generally refers to the size of a tumor and the extent to which it

has metastasized, or spread to other parts of the body. Metastasis can be aggregated into

three regions: local, regional, and distant. Local is confined to the initial site. Regional

metastasis describes breast cancer that has spread to the lymph nodes. Distant metastasis

is breast cancer that spread beyond the lymph nodes. Table 2-3 summarizes the stages of

breast cancer, which was published in 1982 by the American Joint Committee TNM

(tumor, lymph node, and distant metastases) Staging of Breast Cancer.

Table 2-3: Breast Cancer Staging (Source: The Breast Cancer Digest)

iStaqe Tumor Size (cm) Metastases
I <2 local; regional negative; distant not detected
II 2-5 local; regional negative; distant not detected; or

<5 local and regional; distant not detected
III >5 Or

any invasion of skin or chest wall or "grave signs"1, or
any regional (collarbone area); distant not detected

IV any local; regional positive or negative; distant detected

1 Advance disease indicators such edema, skin ulceration and pitting, or satellite skin nodules (National
Cancer Institute; 1984: 47).

11

www.manaraa.com

2.4 Screening for Early Detection

From the stages identified in the previous section, it is apparent that improving a

woman's chance of surviving breast cancer relies heavily upon detecting the cancer at the

earliest possible point of tumor development. Attempts are being made to predict a

woman's risk of contracting breast cancer by focusing on enhancing mathematical

models that identify this risk (Rosner, 1996). The values of the model's parameters are

based upon a woman's personal and genetic history. If the model indicates a woman is

"at risk," then she can be monitored more closely so that if cancer does develop, the

probability of detecting the cancer at an early stage is improved. If a woman is

determined to have an increased risk of developing breast cancer, she is given

recommendations regarding the frequency of conducting a breast self-examination (BSE)

and clinical breast examination (CBE), to include "visual" exams, such as

mammography, ultrasound, and magnetic resonant imaging. This falls in the area of

screening, and the literature is rich with information on both the rationale and the

methods for screening for the early detection of breast cancer.

2.4.1 Physical Examination

The U.S. Department of Health and Human Services has stated in numerous

publications that women should make breast examinations a regular part of their medical

checkup routine. Barton et al reported in The Journal of the American Medical

Association that the CBE is a critical component of early detection (JAMA, 1999). Their

study reviewed MEDLINE data on breast examinations from 1966-1997 and is one of the

12

www.manaraa.com

most thorough reports on the effectiveness of the CBE found in the literature. Not only

does their report analyze the effectiveness, but also discusses the basis for the physical

breast exam, the risk factors involved, various examination methods, and their accuracy.

The CBE appears to be most effective at detecting breast cancer when combined with

mammography.

2.4.2 Mammography

Traditional mammography involves compressing the female breast in an

apparatus and subsequently subjecting the breast to a small amount of X-ray radiation

(less than 1 rad). After the radiation passes through the breast, it strikes and exposes X-

ray film. The resulting image is analogous to a black-and-white photographic negative.

Both vertical and horizontal compression images are made. Nonpalpable breast

anomalies may be detected through traditional mammography, and, as stated in the

previous paragraph, is designed to compliment a physical breast examination. Sequences

of mammograms taken over time can indicate subtle breast tissue differences not readily

attributable to changes expected as a result of aging.

To improve the overall effectiveness of mammography, various techniques are

employed to enhance the resulting image. One technique involves taking existing

mammographic film and placing it in a reader that scans and digitizes the image. The

benefit of this technique is that computer software can provide contrast enhancement and

detection algorithms to point out suspicious areas to physicians (Cancer Weekly Plus, 08

February 1999; Women's Health Weekly, 14 June 1999). A second article in Women's

Health Weekly discusses an alternative to scanning traditional film. True "digital

13

www.manaraa.com

mammography," where the X-ray exposure results directly in a digital image, is being

welcomed as a potential replacement to film mammography.

2.4.3 Ultrasound

The use of "echoes" to detect objects, most notably through sound navigation and

ranging, or SONAR, is not limited to submarines or under-sea mammals. Ultrasound is

routinely used to monitor a woman's fetus or provide therapy to deep tissue injuries. For

breast imaging, high frequency sound waves are transmitted into the breast and their

echoes recorded and converted to computer images. The use of ultrasound is limited

when compared to mammography, but The Breast Cancer Digest indicates that it is

particularly useful for identifying cysts, and is frequently used for examining younger

women, whose breast structure is typically denser than the breast tissue of older women

(1984: 39). The success of ultrasound in distinguishing cysts from solid masses is

support by a more recent study by Saarela, et al (1998: 1). Both The Breast Cancer

Digest and the Saarela article express that ultrasound is generally not used as a stand-

alone technique; rather, it is an alternative technique used to supplement mammography.

While the use of ultrasound to supplement mammography is widespread, it is not the only

supplemental technique available.

2.4.4 Magnetic Resonant Imagining (MRI)

The use of MRI in detecting human internal abnormalities is not new. The use of

MRI specifically for detecting breast cancers is relatively new, however. As research and

the results of that research progress, more can be found in the literature regarding the

impact of MRI on the effectiveness of breast cancer detection.

14

www.manaraa.com

A majority of the recent literature on the use of MRI in detecting breast cancer

was found on-line through OhioLink™, via the WSU library on-line catalog system

(http://www.libraries.wright.edu/). An electronic article from the 11 May 1999 issue of

Medical Industry Today, retrieved through LEXUS-NEXUS, cited that, in one particular

study, an 89 percent rate for detection and stage determination of lobular breast cancer.

Lobular breast cancer is one of the more difficult variations of female breast cancer to

detect using traditional mammography or ultrasound techniques. The assertion of the

value of MRI in uncovering tumors hidden in the "normal tissue" of a mammogram is

also cited in Women's Health Weekly ("MRI vs. Mammography and Ultrasound for

Cancer," 10 May 1999).

The high interest in MRI as a means of detecting breast cancers missed by

mammography is further supported in a 29 July 1999 excerpt from Radiology ("MRI

Detects Breast Tumors Missed by Mammography"). The cost of MRI exceeds that of

mammography by a factor of 10 and has difficulty identifying tumors at 2 mm and

smaller. Nevertheless, it is considered a viable alternative to mammography, particularly

when high sensitivity is desired. Work by Davis and McCarty summarizes a tremendous

literature review of the sensitivity and effectiveness of MRI (1997). The data from this

study support assertions that MRI is extremely useful when improved accuracy of breast

cancer staging is critical to determining a prognosis and treatment path. Despite the

superior imaging capabilities of MRI, it is still considered a supplement to

mammography and ultrasonography (1997: S296).

15

www.manaraa.com

2.4.5 Other Imaging Techniques

Confidence in established imaging techniques has not impeded the development

of newer methods for increasing the probability of correctly diagnosing breast cancer. A

paper release by the Food and Drug Administration describes a hand-held device called

the "T-Scan" that uses electrical current to measure variations in the density of targeted

areas of the breast ("FDA Approves New Breast Imaging Device," 19 Apr 1999). The

device is not designed to replace conventional mammography, rather, to augment

mammography when some ambiguity exists during diagnosis. A paper by Simonetti, et

al, also discusses alternative imaging techniques, including digital mammography, digital

tomosynthesis, digital subtraction angiography (DSA), and computed tomography laser

mammography (CTLM). The Simonetti paper concludes, however, that mammography

remains the imaging technique of choice due to its sensitivity and cost effectiveness

(1998: S241).

2.5 Breast Cancer Modeling

2.5.1 Complex Adaptive Systems

Modeling cancer as a complex adaptive system (CAS) is an intriguing proposition

and, as yet, is unexplored. A cancerous tumor can be thought of as a tightly knit group of

"out of control" cells; they do not respond to the body's regular "divide" and "stop

dividing" signals. That is, these renegade cells behave in a manner inconsistent with

good cell "order and discipline." Establishing their own source of nutrition, they appear

to move, divide, and spread by their own will, autonomous of the body's control

mechanisms.

16

www.manaraa.com

Pitot, in his explanation of carcinogenesis, describes a neoplasm as an

autonomous entity, somewhat independent of the rules applied to neighboring, normal

cells (1978: 16). While his writing is meant for those interested in the language of

oncology, his message can be considered in the context of a CAS. The apparent

autonomous behavior of a tumor captures the essence of a CAS. There appears to be a

wealth of information regarding complex adaptive systems within the operations research

community. Very few references were found, however, that fit within the context of

medical research in general or cancer research in particular.

Coffey's article on complexity alludes to CAS-like properties when he describes

the "self-organization" potential of a tumor during the evolution of individual cells. He

discusses the possibility that the very randomness of the living systems delves into a

world of chaos that is actually predictable. This discussion, which is on the fringe of

chaos theory, helps paint a picture of how complexity and chaos theory might be used in

the study of the behavior of cancer.

Schwab and Pienta provide greater detail on the potential for the use of chaos

theory in the study of cancer. They provide an overview of the behavior of cancer prior

to their discussion of complexity and chaos theory. This leads quite naturally into an

argument on why cancer itself fits this paradigm so aptly and therefore why cancer can

and should be studied as a CAS. This is accomplished by comparing the CAS process

with the known process of a tumor. While the literature on CAS and its use in modeling

cancer is extremely limited, there exists tremendous potential for additional research in

this area.

17

www.manaraa.com

2.5.2 Molecular

While modeling cancer as a complex adaptive system falls at this point in the

realm of the theoretical, molecular modeling is now beyond theory and holds some

promise for the early detection of breast cancer. By understanding the architecture and

behavior of cancer cells at the molecular level—and understanding the cells' effects on

the chemistry of the human body—researchers are finding ways of detecting the presence

of cancer earlier than ever before. By then chemically attacking a cancer cell's receptors,

cancer may be stopped long before detection through conventional means. This research

is still in its infancy, however, and therefore information in the literature is sparse.

2.5.3 Mathematical

Iyengar's (1984) anthology presents a mixed bag of mathematical modeling and

computer simulation to study the behavior of biological systems. He provides an

abundance of formulae and various statistical approaches to implementing computer-

based simulations that mimic complex biological systems. Of particular interest are

chapters 1 through 4. The first three chapters target complex biological systems in their

coverage of modeling and simulation, software engineering, and statistical techniques.

Chapter 4 tackles the subject of specifically modeling cancer. Here, W. Diichting, a

professor of electrical engineering at the time this collection was published, applies

control systems theory to model the kinetics of cancer cells.

Interestingly, Diichting describes cancer as "...cell renewal systems which have

become structurally unstable in their closed-loop control circuit" (Iyengar, 1984: 56).

This view is apparent in his free, yet effective use of electronic block and circuit

diagrams. He further applies the processes described by these diagrams to a

18

www.manaraa.com

100 x 100 grid of cells in which he simulates the activities of three cell systems. His

approach strongly parallels Bassham's use of a 2-dimensional matrix to simulate a finite

number of cell population doubles.

2.5.4 Other Models

Bassham's research led to the development of both 2- and 3-dimensional

mathematical models of breast cancer tumor development. The basic model was

developed in MatLab™, by The Mathworks, Inc. As the name might imply, the greatest

strength of MatLab™ ("matrix laboratory") resides in its manipulation of matrices.

Bassham used the visual capabilities of the software package to visually depict his matrix

solution—the result of the tumor growth. He was also able to display the model's output

using The Visual Tookit (VTK), a compilation of computer programming routines

optimized for visualizing data.

Bassham's model works by first creating a matrix of dimension n3, the "growth

space," in which location x, y, z is identified as the starting position for a cancerous cell—

the start of tumor growth. To improve the efficiency of the algorithm, the search is

limited to a subset of the entire growth space. This subset represents the borders of the

current tumor size. The subset of the growth space is then methodically searched until a

cancerous cell is discovered. At each discovery of a cancerous cell, potential directions

of growth are randomly searched. These candidate locations are marked and, once all

candidate locations for each cancer cell are identified, the subset growth space expands

and the candidate cells become full-fledged cancer cells. The process is repeated until

either (a) the number of population doublings specified during simulation initiation is

reached, or (b) the limits of the growth space is reached.

19

www.manaraa.com

Once the growth is completed, the data are visually rendered either in the VTK or

MatLab™. The remainder of this report focuses on replicating Bassham's model in an

alternative environment, while extending both the behavioral and visualization aspects of

the tumor growth. A summary of Bassham's algorithm can be found in the next chapter.

20

www.manaraa.com

III. Methodology

3.1 Overview

The approach taken to achieve the objectives outlined earlier will be an

incremental one. This should be taken literally in the software engineering sense. That

is, we will develop several complete models in a step-wise fashion so that, at the

conclusion of each series of steps, or increment, a limited software product—a working

model—is available for demonstration and use. Each working model will be coupled

with a limited-scope embellishment that serves to achieve very specific objectives. The

model and embellishment are then used as inputs to an additional iteration of the process,

or model development phase. This incremental approach incorporates the long-term

value of a disciplined software engineering approach with the speed and short-term

benefit of prototyping. Each incremental development phase consists of the following

steps: analysis, design, code, and test (Pressman, 1997: 38).

The first step is to analyze the previous model developed by Bassham. The

primary short-term objective is to duplicate this model in its entirety and implement the

model in the Java environment. This will be accomplished by creating an algorithm that

provides a high-level view of the objects and ultimately replicates the basic behavior of

Bassham's model. The next step is to create a design that incorporates as much

functionality as possible.

In the design phase, we take the algorithm and elaborate the model in the Unified

Modeling Language (UML). The UML will form the foundation for generic model and

class descriptions that can be implemented in an object-oriented computer programming

language, such as C++, Java, or Ada. For this project, the UML and supporting diagrams

21

www.manaraa.com

will be used to develop and document the model in Java. The UML will be developed in

the context of Rational Rose, a 4th Generation Language CASE (computer-aided software

engineering) tool. Rational Rose has the capability to automatically generate Java source

code from the constructed diagrams. Java source code is the result of the next phase:

coding.

In the coding phase, we will use the UML diagrams and supporting analysis

documentation to write structured Java code. The tool of choice for his project is

Borland's JBuilder 3, a sophisticated integrated development environment (IDE). The

Java code developed here, however, is not dependent on any particular software

development tool; on the contrary, any Java-compliant development tool will be able to

import and compile the code resulting from this phase. The primary purpose of using

JBuilder 3 is to validate the code and develop the graphical user interface (GUI) for

executing and controlling the model. Execution will occur in the test phase.

The test phase is the final step in the incremental approach to software

development and, thus, the development of the models resulting from this project. All

testing and debugging will be accomplished using the Java IDE mentioned in the

previous paragraph. Once the model appears to be functioning as designed, it will be

tested using a Web browser or Java command-line environment, as appropriate.

The result of the previous four phases is a working model. With the working

model, we will repeat the four phases, using some specified embellishment as input to the

first phase. This process is shown graphically in Figure 3-1.

22

www.manaraa.com

r Banhan'1
1 ■■.M>*d

>'
design code test

Figure 3-1: The incremental model (Source: Pressman, 1997)

We mentioned in the previous section that Bassham's basic algorithm was

identified as the first step in developing a model in the Java environment. The steps

outlined in Table 3-1 represent a generalization of Bassham's algorithm.

Table 3-1: Bassham's tumor growth algorithm

1. Create a 3-dimensional matrix (growth space) and initialize with O's
2. Place the value of 2 (tumor cell) at starting position x, y, z
3. Create a virtual inner matrix (search boundaries) around the tumor

cell; for the first tumor cell, the boundaries are at positions x ± 1,
y ± 1, z ± 1

4. While the number of population doubles is greater than 0, and the
bounds of the virtual matrix have not exceeded the bounds of the
growth space, do steps a-e; otherwise go to step 5
A. While the search of virtual inner matrix is not exhausted, do

steps (l)-(2)
(1) If the matrix position being inspected contains a cancer cell,

then do steps (a)-(b); else go to step (2)
(a) Pick a direction at random and identify a candidate cell

position
(b) If the candidate cell position is occupied or is a barrier,

go to step 4.a.(l)(a); else place the value of 1 (future
cancer cell) and

(2) Go to step 4.A
B. Set all values of 1 to 2 (transform daughter cells to actual

cancer cell)
C. Expand the bounds of the virtual inner matrix
D. Subtract 1 from the number of population doubles
E. Go to step 4
Display the matrix

23

www.manaraa.com

3.2 Java Class Development

As an object-oriented (00) language, Java is capable of modeling real-world

entities within the limits of its lexicon. Classes are the foundation of these modeling

capabilities. Like other 00 languages, Java uses classes to characterize the encapsulation

of the entity's data and an abstraction of its behavior. The data (attributes) are

manipulated by the methods. An object's methods are analogous to functions and

procedures. Methods are used to set an attribute's value. Likewise, methods may be

used to "get" an attribute's value.

One of the objectives of this project is that this model be constructed so that it is

readily adaptable to future research efforts. With that objective in mind, careful

consideration is given to identification and documentation of the components of the

simulation. Object-oriented programming languages inherently support the specification

of a body of objects that represent, as reasonably as possible, objects in the real world.

By understanding and describing the objects and environment we wish to observe, we can

readily translate our understanding to an object-oriented language. This object-oriented

view will be maintained through each phase of the incremental development process.

This view will also assist in the proper development of a graphical user interface (GUI),

which will be included in later increments.

3.3 GUI Development

A recommendation of the previous research is to develop a user interface that may

be used to maintain control over the simulation operation and its starting parameters. As

the models become more complex with successive embellishments, we will transform the

24

www.manaraa.com

model from a simple, Java applet-based GUI to a sophisticated, standalone application

GUI. This will be accomplished only when it makes sense to do so.

3.4 Embellishments

Model embellishments will be accomplished so that any given model is clearly

related to its predecessor. That is, embellishments will not radically transform any given

model so that it is not recognizable from the previous model. We take this approach for

two reasons: (1) If we embellish a given model too extensively and it does not perform as

we expect from the analysis, it will be difficult to move backward to a previous step

where the model worked properly. (2) Adding too much to the model at any given time

may cause us to lose sight of our target. In other words, any drastic enhancement may

inadvertently put us on a tangent that does not directly support the initial objectives.

This concludes the description of the methodology that will be used to develop

the models presented in this thesis. The next chapter provides a detailed description of

each model and the embellishments that differentiate them from their predecessors.

25

www.manaraa.com

IV. Model Descriptions

4.1 Overview

This section describes in detail the design, implementation, and evolution of the

various models used to simulate and ultimately visualize the growth of a breast cancer

tumor in the Java environment. Not only are the structure and operation of the various

models described, but model design rationale is provided as well. First, an overview of

the basic 2-dimensional model and its origin are presented. More detailed design

information is provided next, along with specific information on how the model is

intended to function. Finally, embellishments to the 2-dimensional model are described.

This process is then repeated for the 3-dimensional model.

The different model versions—both in this document and in the Java source code

files—are identified using the Java package name Tumor n, where n is the specific

version number of the tumor model. Each Java package contains all the Java classes

necessary to implement that particular model. More information on the concept of Java

classes is provided in Section 4.2.2. Both 2- and 3-dimensional model descriptions

include a summary of their purpose and the expected results. Analyses of the models and

tumor growth results are provided in Chapter 5.

Note that Java class and object names are shown in 10 point Courier New

typeface (Javaciass and javaobject). Also, class names always start with a capital

letter (cancerceii, cancerTumor, Collection), while an object instance of a class starts

with a lowercase letter (cancerceii, tumor, timeList). This naming system is the

standard convention used with object oriented programming and is followed throughout

this document.

26

www.manaraa.com

4.2 Two-dimensional Tumor Model

4.2.1 Overview

"CancerSim," for Cancer Simulation, is the generic name used to describe any of

the breast cancer simulation models developed during this project. The first model,

TumorOl, is a Java applet that attempts to simulate the growth of a breast cancer tumor in

unconstrained 2-D space. This model is the first attempt at a direct translation of

Bassham's previous work in MatLab™. Since TumorOl is an applet, it can be executed

from within most Web browsers. In a fashion similar to the MatLab™ model, the Java

incarnation utilizes a mxn matrix to represent the tumor growth space.

The dimensions of the growth space depend on the pixel resolution chosen for the

Java applet and the scale (pixel size) of the cancer cells. After simulation initialization, a

numeric value representing a cancer cell is positioned approximately in the center of the

growthspace matrix. After placement of the first cell, the process of population

doublings is initiated. A population doubling is complete when all cells under

consideration are replicated. Replication is defined as follows:

1. The simulation identifies each existing cell,
2. determines its current position in the growthspace,
3. randomly chooses a direction of travel, and
4. places a new cell at that position.

We use the term replication here because, with a single exception, all cells are

identical. The only attribute that differentiates one cell from another in this model is the

cell's location in space.

The simulation ends when the total number of replications equals the population

doublings value. The number of population doublings is a constant value "hard coded"

27

www.manaraa.com

into the Java simulation. In subsequent versions of CancerSim, this value and other

parameters can be changed at simulation runtime through a graphical user interface.

4.2.2 Class Development and Modeling Diagrams

The first effort at developing a tumor growth simulation resulted in the creation of

a single class to represent the complete model. Since computer software is being used to

construct the model, the term class in taken from the domain of object-oriented software

engineering. A class is a concept that combines both descriptive data and procedural

abstractions in such a way that the resulting object, an implementation of the class,

reasonably describes a real world entity (Pressman, 1997: 556). Ideally, a class describes

a single entity, and this concept is realized as the cancer simulation model is further

developed.

Since the first model was a direct translation of Bassham's MathLab™ model,

there existed the desire to quickly produce a model for proof-of-concept purposes. To

reduce the overall model development time, the analysis and design phases were kept to a

minimum. The result is a single class to describe Bassham's model in its entirety.

UML is fast becoming an accepted international standard for describing object-

oriented concepts. UML was designed specifically to be a mechanism for standardized

object modeling while being blind to any specific language implementation (Müller,

1997: 10). Figure 4-1 is a Unified Modeling Language (UML) diagram that was

developed using the Rational Rose™ computer assisted software engineering (CASE)

tool. In most instances, providing the particular CASE tool supports the process, a

properly constructed UML diagram may be converted directly to object-oriented

28

www.manaraa.com

programming source code such as Java, C++, or Ada. This particular feature of the

CASE tool, however, was not utilized during this development effort.

TumorAppletl
X_DIM : int = 400
YJDIM : int = 400
SCALE: int = 1
POP_DOUBLES:int=12
appletWidth: int
appletHeight: int
cellWidth: int
cellHeight: int
growthSpace CD: char
xPos: int
yPos: int
colorsQ : Color = {white, red, black}

init (): void
reset 0: void
paint 0: void
start (): void
growTumor (xPos: int, yPos : int)
getParameterlnfo 0 : StringrjQ

class name

y attribute name: type = initial value

> method name (argument name : type): return type

Figure 4-1: TumorOl Class Diagram

The topmost portion of the class diagram contains the name of the class. The

compartment below the class name contains each attribute name, its data type, and, if

applicable, the attribute's initial value. The compartment below the list of attributes

contains the programming method names and any required parameters that are passed.

The data type after the colon identifies the type of object, if any that is returned after the

method has completed the task for which it was designed. Note that a missing return type

and the type void have identical meaning. Also note that a method name, its parameter

list, and return types are collectively known as the method's signature. This term will be

used in all subsequent references to a method name when it is in the context of a class

diagram.

Table 4-1 lists each attribute name and a brief description. The usage contexts of

the attributes and methods are included in the operational description.

29

www.manaraa.com

Table 4-1: Attribute List (TumorOl.TumorAppletl)

I Attribute Name Description

XJDIM Integer; initial width, in pixels, of the Java applet window size

YJDIM Integer; initial height, in pixels, of the Java applet window size

SCALE Integer; pixel size of individual cancer cells

POP_DOUBLES Integer; number of times each cell population divides

appletWidth Integer; derived; actual width of the Java applet window

appletHeight Integer; derived; actual height of the Java applet window

cellWidth Integer; derived; represents the number of cells in the x axis of
the growth space

cellHeight Integer; derived; represents the number of cells in the y axis of
the growth space

growthSpace[][] Character matrix; derived; represents the tumor growth space

xPos Integer; initial x position of the cancer cell within the growth
space

yPos Integer; initial y position of the cancer cell within the growth
space

colors[] Color array; used for painting the applet screen and cancer
cells

4.2.3 Operational Description

For the early models, an applet, as opposed to an application, was chosen as the

implementation vehicle because these initial versions are relatively free of

embellishments. TumorOl in particular was implemented using the Java Applet class

primarily because of how quickly the model could be engineered. Before proceeding,

there are a few points concerning applets that must be mentioned so that the Java source

code is more comprehensible.

When a Web browser first loads an applet, there are four methods automatically

called by the browser: init (), start (), stop (), and destroy (). Additionally, when a

browser's refresh or reload button is pressed, the reset () method is called. Any of these

methods may be overridden in the Java code, and TumorOl overrides init (), start (),

30

www.manaraa.com

and destroy (). In addition to these methods, repaint () is called automatically any

time there is a need for the computer's screen to be refreshed. The method repaint ()

may also be called "manually" when necessary to update the screen at specific points in

time. Again, these points are made simply because the automatic calls to some of these

methods can make it difficult to trace through the Java source code.

After TumorOl is loaded by the browser, init () is called and the first of two

simulation initialization phases takes place. The four steps to this part of the initialization

are as follows: (1) set the default applet window size to X_DIM X Y_DIM pixels, (2)

readjust the appletwidth and appletHeight attributes to values that are multiples of

SCALE, (3) set cellwidth and cellHeight to the quotients of appietwidth/scALE and

appletHeight/SCALE respectively, and (4) create the growthspace matrix to the size

celiwidthxcellHeight. After these four steps, reset () is called manually from

init () and all elements of the growthspace are set to zero.

At this point there exists an initialized tumor growth space that is ready to receive

placement of the first cancer cell. Next, start() is called automatically by the browser.

This method determines the position of the first cancer cell within the growthSpace

matrix, places the cancer cell, refreshes the display, and then passes the coordinates of the

first cell to the growTumor() method.

A quick review of the Java source code reveals that a "2" is used as the value of

the first cell in the matrix. When the screen is refreshed, a value of 2 in the growthspace

matrix will be displayed as a black cancer cell on the screen. This was done to allow

visual tracking of the tumor's origin. Note that all other cells values are "1," which

translate to red cancer cells when displayed on the screen.

31

www.manaraa.com

After start () completes the growthspace initialization, growTumor () is called

and the xy positions of the first cell are passed as parameters. This method is the heart of

TumorOl. It is here that cancer cells are replicated and tracked. Each cell's position

within the growth space is tracked with a static 2-D "cell vector," an m «x2 array that is

created at runtime and whose length corresponds to the number of cells available within

the growthspace. The number of times ceiivector is scanned represents the number of

population doublings that occur. For each cancer cell found in ceiivector, a new

cancer cell is placed in an unoccupied position in the growthspace.

The direction in which a search for a free space is conducted (there are eight

possible directions) is determined by a uniform random number. The random number is

generated each time a new cell must be positioned. Figure 4-2 shows the possible

directions of cell movement. The probability of moving in any of the indicated directions

is %, or 0.125.

»'s A *
< £*

OT >
n V -4

Figure 4-2: Cancer cell movement within
the 2-D tumor growth space

The process of growing a tumor within the growTumor () method is a repetitive

process that may be described as follows: After placement of the first cell as noted in the

32

www.manaraa.com

preceding paragraph, a uniform random number is drawn on the interval [0.000, 1.000).

Starting with "North" and moving clockwise through the seven remaining potential

directions, the random number is compared with the values possible for each direction. If

the random number is on the interval [0.000, 0.125), the cell will move North; if on the

interval [0.125,0.250), the cell will move Northeast. These checks are made until the

random number fits within one the specified intervals. The Java code supporting this

algorithm is shown in Listing 4-1.

Listing 4-1: Determining cell direction in 2-D space

// Get uniform random number on the interval [0.000, 1.000).
rNum = Java.lang.Math.random();
// Use random number to determine direction of new cell's
position.
if ((0.000 <= rNum) && (rNum < 0.125)) { // y+ ("North")

moveX = 0;
moveY = 1;

}
else if ((0.125 <= rNum) && (rNum < 0.250)) { // x+, y+
("Northeast")

moveX = 1;
moveY = 1;

}
else if ((0.250 <= rNum) && (rNum < 0.375)) { // x+ ("East")

moveX = 1;
moveY = 0;

}
else if ((0.375 <= rNum) && (rNum < 0.500)) { // x+, y-
("Southeast")

moveX = 1;
moveY = -1;

}
else if ((0.500 <= rNum) && (rNum < 0.625)) { // y- ("South")

moveX = 0;
moveY = -1;

}
else if ((0.625 <= rNum) && (rNum < 0.750)) { // x-, y-
("Southwest")

moveX = -1;
moveY = -1;

}
else if ((0.750 <= rNum) && (rNum < 0.875)) { // x- ("West")

moveX = -1;
moveY = 0;

}
else if ((0.875 <= rNum) && (rNum < 1.000)) { // x-, y+
("Northwest")

moveX = -1;
moveY = 1;

}

33

www.manaraa.com

Note that at this point the simulation has only determined a direction of travel for

a new cell. The current cell's coordinates xPos and yPos are summed with the values

representing the direction of travel: movex and moveY. The result is a candidate position

within the tumor growth space. The candidate position is then checked to see if it is

currently occupied by another cancer cell. If the candidate position contains a value other

than 0, the position is occupied. If a position is occupied, movex and moveY are

incremented according to a rule set supporting the current direction of travel and again

summed with the original coordinates xPos and yPos. The net effect of this process is

that a candidate position is searched in the same direction determined by the code in

Listing 4-i.

Once a free position is found, xPos and yPos are updated to reflect the new

coordinates. At this point, growthSpacetxPos] [yPos] is set to 1. This indicates that a

cancer cell now exists at those coordinates within the cancer growth space. Next, the -

cancer cell is effectively "added" to the celivector which, again, is meant to be a

mechanism for managing the collection of cells that comprise the tumor. Figure 4-3

shows the contents of celivector and the positions of the indices after placement of the

first cell.

firstCell

celivector

~1
0 1 2 3 A 5 6 7 / / n-3 n-2 n-1

3 0 0 0 0 0 0 Kl 0 0 0

3 0 0 0 0 0 0 i 0 0 0
i /

lastCell ■ ' lastDaughter

Figure 4-3: Cell vector before first population doubling

34

www.manaraa.com

It should be noted that during each population doubling, the new (daughter) cells

are logically separated within the ceiivector by way of the lastceii and

lastDaughter indices. During each scan of ceiivector, all cells found between

f irstceii (always index 0) and lastceii indices will be divided. Each new daughter

cell is placed behind the current position of the lastDaughter index. That is, all cells

from position f irstceii through lastceii cell represent the parents, and cells from

lastceii +1 through lastDaughter represent the daughter cells. The process for the

first population doubling is detailed in Figure 4-4 and explained in the next paragraph.

firstCell

o
1

lastCell -

firstCell

©

0 1 2 3 * 5 6 7 / / n~3 n~2 n-1

ü
7/

- lastDaughter

firstCell

©

lastCell -

firstCell

0 1 2 3 4 5 « 7 // n-3 n-2 n-1

- lastDaughter

0 1 2 3 4 5 6 7 // n-3 n-2 n-1

3 4 0 0 0 0 0 <(
0 0 0

3 2 0 0 0 0 0 1 0 0 0

t /

01234567/ / n-3 n-2 n-1

X 3400000 0//0OO

Y3200000 0// 0 0 0

lastCell ' ' lastDaughter lastCell ' ' lastDaughter

Figure 4-4: Cell vector after first population doubling (step 4)

Figure 4-4 shows the basic process behind the first population doubling, which, as

described here, is independent of the details required to update the tumor growth space.

(Recall that the tumor growth space is used to check for the presence of a cell at a

particular location and update the tumor projection.) Every population doubling using

the ceiivector structure occurs as follows: Starting at the index identified by

firstCell, the cell vector is scanned for parent cells and stops only after it reaches the

lastCell index. Step 1 shows that a parent cell was found at position 0. The cell at

35

www.manaraa.com

position 0 divides and the daughter cell is placed in the position immediately following

the current position of the lastDaughter index (step 2). In step 3 the lastDaughter

index is updated to point to the current "last daughter." Since position 0 of the cell vector

is also the lastceii, a complete population doubling has occurred. That is, all parent

cells have divided. To finalize the process, step 4 illustrates that lastceii is updated to

point to the same position as lastDaughter. This effectively promotes the daughter cells

to parent cell status. Figure 4-5 demonstrates the use of the cell vector for the second

population doubling, and the paragraph that follows briefly describes the process.

firstCell firstCell

o
lastCell

0 1 2 3 4 5 6 7/ / n-3 n-2 n-1

3 4OOOOO0//0OO

3 _2 0 0 0 0 0 a / 0 0 0_
©

0 1 2 3 4 5 6 7// n-3 n-2 n-1

3420000c//oOO

3 2 2 0 0 0 0 0// 0 0 0

- lastDaughter lastCell - - lastDaughter

firstCell firstCell

©

01234567/ / n-3 n-2 n-1

3_ 4 _2 0 0 0 o 0/ / 0_ _0 0_

3_ 2 _2 0_ _o o_ 0 0// 0 _0 0_

0 1 2 3 4 5 6 1 / / n-3 n-2 n-1

Y

3 4 2 0 0 0 0 <, 0 0 0

3 2 2 0 0 0 0 1 0 0 0
1 1

lastCell - - lastDaughter lastCell ^ •- lastDaughter

firstCell firstCell

0 1 2 3,4 5 6 7 / / n-3 n-2 n-1

3_ _4 2 4^ rj 0_ _0 0/ / 0 0 0_

3 2 2 3^ 0 0 0 0// 0 0 0

0 1 2 3 4 5 6 '// n-3 n-2 n-1

Ä x 3 4 2 4 0 0 0 <(0 0 0

3 2 2 3 0 0 0 4J- 0 0 0

lastCell - * lastDaughter lastCell lastDaughter

firstCell

01234567/ / n-3 n-2 n-1

_ X 3 4 _2 4^ 0 0^ 0 0// (> 0 0_

Y3223OO0o//0O0

lastCell ——' ' lastDaughter

Figure 4-5: Cell vector after second population doubling (step 7)

As with the first population doubling, the second population doubling starts by

scanning from firstCell through lastceii and each cell found is doubled. Step 1

36

www.manaraa.com

shows that a parent cell was found at position 0. In step 2, the daughter of the first

division is place after lastDaughter, and in step 3 lastDaugher is updated to reflect the

position of new lastDaughter. In step 4 the scanning mechanism is incremented and

another parent cell is found. In step 5 the parent cell at position 1 is divided and the

daughter placed at position 3. Step 6 again shows that the lastDaughter index is updated.

Since the vector was completely scanned for parent cells (firstCell to lastCell), the second

population doubling is complete and lastCell is updated in step 7. The process

described for the first and second population doublings is repeated the number of times

specified by the POP_DOUBLES attribute found in Figure 4-1.

Figure 4-6 summarizes the relationship between the major components of

TumorOl. The tumor growth space is used to check for free space for a new cell. The

cell vector is used to manage and track the cancer cells, and the Java applet window

provides a 2-D display of the data generated in the tumor growth space.

growthSpace 0 12 3 4 5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 2 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Java Applet Window

cellVector

0 1 2 3 4 5 e 7 , 33 34 35

X 3 3 2 4 0 0 0 it 0 0 0

Y 2 3 2 2 0 0 0 Jo 0 0 0

Figure 4-6: TumorOl Object relationship diagram

37

www.manaraa.com

4.2.4 Embellishments

4.2.4.1 Overview

The purpose of the embellishments of the 2-D model is to improve on the

scalability of the model and incorporate a means to verify tumor growth during the

process as opposed to after the tumor growth is complete. By scalability, we mean that

the model can be readily adapted to more complex problems. "Readily" is certainly

relative, but the intent is that this model be continuously refined so that it can be applied

to more complex situations with a minimum amount of model retooling. The verification

part of the embellishment is simply a nicety providing easy confirmation that the model is

behaving as expected.

It was mentioned earlier in this chapter that, under ideal circumstances, an object

would depict as closely as possible the real-world entity it is intended to model.

Additionally, one of the objectives of this project is to attempt to model the tumor growth

in such as way as to exhibit complex adaptive behavior. In simple terms, the cancer cells

should be autonomous entities that are not only aware of each other, but also know how

to interact with each other and their environment. If their environment changes, they

have the ability to make decisions regarding their future behavior.

4.2.4.2 Model Modifications

The most obvious modification to the model—both logically and physically—is

the creation of a cancer cell entity. The class cancerCeii is the first attempt at modeling

an individual breast cancer cell. At this early stage, the CancerCeii class has only a

single attribute, which is its location in 2-D space. Figure 4-7 shows the UML diagram

for the model Tumor02.

38

www.manaraa.com

Note that the name of the main class is changed from TumorAppleti to

cancersimAppiet. As development on the models progresses, the reader will note an

improvement in the naming conventions used to describe the model, and the name change

mentioned here is simply part of that improvement process.

CancerSimApplet

thread : Thread = null
X_DIM : int = 360
Y_DIM : int = 360
SCALE : int = 4
POP_DOUBLES:int = 11
appletWidth: int
appletHeight: int
cellWidth: int
cellHeight: int
growthSpace D[]: char
xPos: int
yPos: int O
colorsG : Color = {white, red, black}
cellVector: Vector
cancerCell: CancerCell
tempCell: CancerCell

init 0: void
update (g : Graphics): void
paint (g : Graphics): void
start (): void
run 0: void
getParameterlnfo (): StringQ[]

has
CancerCell

location : Point = xPos, yPos
1..*

Figure 4-7: Tumor02 Class Diagram

At this point the relationship between the CancerSimApplet and CancerCell

classes should be explained. The UML diagrams used throughout this document are read

left to right and top to bottom. The line between the two classes in Figure 4-7 establishes

the type of relationship and the cardinality of that relationship. The diamond attached to

the left side of the connecting line indicates that the CancerSimApplet is an aggregation

of the CancerCell class. Used in conjunction with the cardinality "1..*" shown on right

side of the relationship, this diagram illustrates that the CancerSimApplet has one or

39

www.manaraa.com

more cancer cells. Hopefully at this juncture it is apparent to the reader where further

embellishments of this class relationship will lead.

Table 4-2 lists the attributes for each class in Tumor02 and provides a brief

description of their purpose.

Table 4-2: Attribute List (Tumor02.CancerSimApplet)

Class Namel Attribute Name Description

CancerSimApplet thread

CancerCell

X_DIM

Y_D1M

SCALE

POPJDOUBLES

appletWidth

appletHeight

cellWidth

cellHeight

growthSpace[][]

xPos

yPos

colors[]

cellVector

cancerCell

location

Thread; allows the applet to run within its own thread of
execution

Integer; initial width, in pixels, of the Java applet window size

Integer; initial height, in pixels, of the Java applet window size

Integer; pixel size of individual cancer cells

Integer; number of times each cell population divides

Integer; derived, actual width of the Java applet window

Integer; derived, actual height of the Java applet window

Integer; represents the number of cells in the x axis of the
growth space; derived from applet width and scale of cancer
cell

Integer; represents the number of cells in the y axis of the
growth space; derived from applet height and scale of cancer
cell

Character matrix; derived; represents the tumor growth space

Integer; initial x position of the cancer cell within the growth
space

Integer; initial y position of the cancer cell within the growth
space

Color array; used for painting the applet screen and cancer
cells

Vector; container to hold and manage the cancer cells

CancerCell; object containing a point in the xy plane;

represents an individual cancer cell

Point; object with attributes allowing manipulation in
the xy plane

40

www.manaraa.com

4.2.4.3 Process Modifications

There were several process, or model behavior, modifications made during this

embellishment to improve the overall simulation performance. The first modification

involved allowing the Java applet to operate in its own thread of execution. Without

going into unnecessary detail, threads generally provide improved execution times and

give us greater control over the timing and duration of the execution. In a nutshell,

placing components of the model in separate threads allow us to start, pause, or stop the

simulation as necessary. Without threads, the simulation cannot be easily interrupted.

In addition to allowing the model to run in its own thread of execution, the simple

celivector array was exchanged for a Java Vector class. A Vector can be thought of as

a "container" in which we place our cancer cells. The Vector class includes powerful

methods to manipulate virtually any object placed inside of it. Additionally, since the

Vector only views its contents as "objects," the cancerCell class can be changed

extensively with absolutely no modification to the rest of the code base. This

embellishment directly supports the scalability concept mentioned earlier. Despite this

particular change in container objects (Array to vector), the basic process for managing

the collection of cancer cells remains the same. The real change is buried in the details of

how we access the different implementations of the celivector object.

Another embellishment affecting the tumor growth process is that the code in

Listing 4-1 was optimized to reduce the number of checks required to obtain a cell

direction. Whereas the Java code in TumorOl implemented a sequential check to match

the random number to its interval, Tumor02 implements a pseudo binary search that

effectively reduces the expected number of checks from four to three.

41

www.manaraa.com

Finally, minor modifications were made to "see" the tumor grow. After each new

cell is placed in the growthspace, a call is made to repaint (). Since the simulation is

running in its own thread, the calls to repaint () are queued and then processed when it

is convenient to the thread.

Even with these embellishments, the basic behavior of Tumor02 is virtually

identical to that of TumorOl. The most significant changes in Tumor02 are the addition

of the cancerceii class and the use of the Java Vector to store the cancer cells. These

changes primarily affect how we view the model and how easily the model can be scaled

in the future. Figure 4-8 shows the object relationship diagram with these

embellishments in effect.

growthSpace 0 12 3 4 5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 2 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1I¥JM^>

Java Applet Window

cancerCell

cellVector

Figure 4-8: Tumor02 Object Relationship Diagram

42

www.manaraa.com

4.2.5 Summary

The development of these initial models serves several purposes. First and

foremost, it provides a simple mechanism for proof-of-concept demonstrations for the

translation of Bassham's MatLab™ model to Java. In addition to proving an

understanding of the basic model itself, it is expected to show that the model can be

effectively implemented in a computer environment where the programming code is not

native to that particular platform. In other words, it is important to show that a cross-

platform, general purpose programming language such as Java can be as effective as the

original model's MatLab™ code, which is optimized specifically for mathematical

operations.

The second purpose of the initial models is that they provide a means to explore

the possibilities of constructing a breast cancer tumor model in such a way as to emulate

a real-world entity in both behavior and structure. In theory, an object-oriented

programming language such as Java makes it easier to model complex real world entities.

It is expected that following the object-oriented paradigm will actual make it easier to

construct such a model.

Finally, the initial models are instruments with which to experiment using various

techniques for visually depicting the results of the simulation. Again, it is expected that

these initial Java models provide at least the same visual functionality as the MatLab™

counterpart.

43

www.manaraa.com

4.3 Three-dimensional Tumor Model

4.3.1 Overview

The models described in this section are similar in behavior to the 2-D models

presented in the previous section, with the obvious exception that a third dimension was

added. Rather than constraining tumor growth to 2-D space, essentially width and height,

a third dimension, depth, was added to allow virtually unencumbered tumor growth.

Where the 2- and 3-dimensional models diverge, however, is in the way they are

structured. The initial 3-D model attempts to capitalize on the object-oriented foundation

laid during development of the 2-D models. Paragraph 4.3.2 elaborates on how these

ideas are implemented.

In Section 4.3, all references to CancerSim are to models that simulate the growth

of a 3-dimensional breast cancer tumor. The first 3-D model utilizes a static Ixmxn cube

for the tumor growth space. The dimensions of the growth space depend on the pixel

dimensions chosen for the applet and the scale (size) of the cancer cell in pixels. After

initialization, a single cancer cell is positioned approximately in the center of the cube.

The cell's position is tracked with a dynamic, object-oriented container (vector) that is

created at runtime. The number of times the container is examined represents the number

of population doublings that occur. For each cancer cell found in the vector celivector,

a new cancer cell is placed in an unoccupied position in the cube growthspace. The

direction in which a search for a free space is conducted (there are 26 possible directions)

is determined by a uniform random number that is generated each time a cell must be

positioned. The simulation ends when the number of population doublings is complete or

44

www.manaraa.com

the tumor growth exceeds the bounds of the growthspace cube. If this condition occurs,

a Java exception will be thrown (ArraylndexOutOf BoundsException).

Implementation of the 3-dimensional models was accomplished using both

applets and applications. Despite the variations between the methods of implementation,

the 3-D models described here are expected to present virtually identical results.

Variations between these models lie mostly in efficiency of some of the procedures used

to grow tumors and detect the presence of a cancer cell in a particular location. This

section describes Tumor03, as well as embellishments Tumor03_l, Tumor04,

Tumor04_l, and Tumor04_2.

CancerSim models Tumor03 and Tumor03_l are the final versions using the Java

applet interface. It was mentioned earlier that there are several objectives of this project.

One of those objectives, which was spurred by a recommendation in Bassham's thesis, is

that a graphical user interface (GUI) be built to allow user interaction with the simulation

parameters. Additionally, it is a desire to allow simulation parameters as well as

simulation-generated data to be saved to and retrieved from external storage devices.

While a GUI is easily built using Java components supported by the Applet class, data

transfer between the applet and secondary storage devices is strictly prohibited by Java

security policies built into the language. Additionally, there are some advanced GUI

components not readily supported by the current generation of Web browsers. Thus,

Tumor03 and Tumor03_l introduce a 3-D environment while retaining the basic GUI

functionality found in previous versions. Tumor04 and subsequent versions carry

forward the 3-D tumor growth environment while introducing more advanced user

45

www.manaraa.com

interface components, user adjustable simulation parameters, as well as the ability to

transfer data between the application and auxiliary storage.

4.3.2 Class Development and Modeling Diagrams

This version of CancerSim, Tumor03, resulted in relatively minor modifications

to the two existing classes, and the creation of two additional classes. All modifications

are intended specifically to support the more complex 3-D tumor growth environment.

Figure 4-9 shows the UML class diagram for Tumor03.

CellDirection

$ rRef: Int = 0

$ X: int = 1

$ Y: int = 2

$ Z: int = 3

$ tPoint: Point = 0,0,0

$ rDirectionfJ[]: double = {See documentation.}

CancerSimApplet

Accesses
thread : Thread = null

X_DIM : int = 400

Y_DIM : int = 400

SCALE : int = 4

POP_DOUBLES:int = 11

appletWidth: int

appletHeight: int

cellWidth: int

cellHeight: int

growthSpace ODD: char

xPos : int

yPos : int

zPos : int

cellVector: Vector

cancerCell: CancerCell

tempCell: CancerCell

tPoint: Point

cellValue: int

cScale: int

cellDirection: CellDirection

finished: boolean

/ 1

getDirection (): Point

Uses
1

Point

x: float = x

y: float = y

z: float = z

set (x: float, y: float, z : float)

^v Has

Contained in

1

CancerCell

location: Point = xPos, yPos, zPos

init (): void

update (g: Graphics): void

paint (g : Graphics): void

start 0 : void

run 0: void

getParameterlnfo (): StringQQ

1..*
setLocation (xPos : float, yPos : float, zPos : float): null

Figure 4-9: Tumor03 Class Diagram

46

www.manaraa.com

Note the relationship between the classes depicted in the diagram. The main Java

class cancersimAppiet accesses an instance of the celiDirection class and has

mulitple instances of the cancerceii class. Additionally, the CeliDirection class uses

a single instance of the Point class, and there is one instance of a Point class in each

instance of a cancerceii. More details on modifications and construction of these

classes follow. First the modifications to CancersimAppiet and cancerceii classes are

described, and then the new classes and the rationale for their construction are presented.

Changes made to the CancersimAppiet class are primarily those required to

support tumor growth in 3-D space. Where Tumor02 contained a 2-D growthspace,

Tumor03 contains a 3-D growthspace. An index (zPos) was added to support the

additional dimension, some temporary attributes were added in support of cancer cell

manipulation, as well as a declaration for the new class CeliDirection. A subtle

modification with significant performance implications is the addition of a Java Thread

attribute. This attribute is explained further in Section 4.3.3.

Changes made to the Cancerceii class primarily involve the addition of a

method to allow setting of the values for a cancer cell's location in 3-D space. As with

the previous implementation of cancerceii, this class uses a Point to describe the cell's

location; however, the default Java Point is only 2-dimensional. To support 3-D space a

new Point was constructed. To support the object-oriented concept of encapsulation and

data hiding, we do not have direct access to the attributes contained in a class. Thus,

"set" and "get" methods are created so an object instance of the class can essentially

access itself. We simply tell a cancer cell to set its location to the coordinates we provide

in the argument list. The details of how the cancer cell sets the value of its location

47

www.manaraa.com

attribute are not only hidden from our view, but those details are irrelevant as well. From

a model development perspective, we are not concerned with how the tool works; rather,

we are concerned with how to use the tool.

The Point class shown in Figure 4-9 provides the basic functionality required for

this version of CancerSim, and it is constructed with scalability in mind. It was

mentioned earlier that the initial 2-D models provided a means to explore various

methods of visualizing growth of the breast cancer tumor. The Java language supports an

optional application programming interface (API) called Java3D. This API includes

variations on Point that support complex vector calculations in 3-D space. While we are

not ready to implement something that complex, the path to the Java3D API must be

cleared. This is done by making Point as compatible as possible with the Java3D

counterpart. The final addition to this model is the class celiDirection.

The basic algorithm required for determining a direction for a new cancer cell in

the 2- and 3-dimensional models is similar. As a consequence of the added dimension in

the 3-D model, however, the amount of programming code required to support the

algorithm is approximately three times greater. Because of the increase in code required

to support a 3-D random direction, a separate class was engineered to act as a simple

look-up table for determining a new cell direction. Not only does this logically isolate

the operation of finding a random direction of travel, but it also simplifies and improves

the readability of the Java source code. More details on the operation of the additional

classes are provided in the next section. Table 4-3 lists the Tumor03 class names,

attribute names and descriptions only where they changed from or added to the Tumor02

attributes identified in Table 4-2.

48

www.manaraa.com

Table 4-3: Attribute List (Tumor03.CancerSimApplet)

Class: Name Attribute N.-ime Description

CancerSimApplet GrowthSpace[][][] Character matrix; derived; represents the tumor growth space

Zpos Integer; initial z position of the cancer cell within the growth
space

CancerCell; temporary cell

Point; temporary point

Integer; value representing the depth or density of the tumor
along the z-axis

Integer; used to proportionally scale the tumor colors to
provide maximum contrast for viewing

CellDirection; lookup table to determine the direction of
travel for a new cancer cell

Boolean; used as a flag to indicate the simulation is complete

Integer; index into rDirection

Integer; index into rDirection

Integer; index into rDirection

Integer; index into rDirection

Point; temporary point

Double; lists the random number intervals and corresponding
cell direction tuple

Float; represents the x coordinate in 3-D space

Float; represents the y coordinate in 3-D space

Float; represents the z coordinate in 3-D space

CellDirectionl

Point

TempCell

tPoint

cellValue

cScale

cellDirection

finished

rRef

X

Y

Z

tPoint

rDirection[][]

y

z

4.3.3 Operational Description

The initialization process for Tumor03 is identical to that of Tumor02: the method

init (), which is automatically called after the browser loads the applet, proceeds to set

the default applet window size to X_DIM X Y_DIM pixels, readjusts the appiewidth and

appietHeight to values that are multiples of SCALE, and then sets ceiiwidth and

cellHeight to the quotients of appletWidth/SCALE and appletHeight/SCALE

respectively. Changed from previous versions is the initialization of the tumor growth

49

www.manaraa.com

space. Since depth (z-axis) was added to this model, the growthspace matrix is now

created with the following dimensions:

cellWidthxcellHeightx [(cellWidth + cellHeight)/2]

Using the default, hard coded parameters, the growthspace dimensions are 100x100x100.

After initialization of the applet display and tumor growth space dimensions,

start () is the next method automatically called by the browser. In a manner effectively

identical to previous versions, this method determines the position of the first cancer cell

within the growthspace matrix, initializes the individual growth space cells to zero, and

then places the first cancer cell at the position that was just calculated (approximately

center). A minor visual difference between the 2-D and 3-D projections is that the initial

cell in the 3-D version is not painted black. After placement of the first cell, the process

differs somewhat from previous versions.

The purpose of a Java thread was described In paragraph 4.2.4.3. This version of

CancerSim makes use of threads through implementation of the Java Runnable ()

interface. (See the class declaration statement in the Tumor03 source code.) The final

step carried out by the start () method is to create a thread instance, associate the entire

applet with that thread, and then "start" the thread through use of the start () method.

Listing 4-2 contains the code snippet from the start () method that creates and starts the

thread. Note that the getName () method serves no purpose relative to the creation of a

thread instance. The name of the applet may be accessed, however, for particular thread

management functions, such as to see if an instance of a particular thread exists.

50

www.manaraa.com

Listing 4-2: Thread Creation in Tumor03

// Set flag to indicate the tumor growth is not complete, then create an
// instance of a thread, associate this applet with the thread, and finally
// start the thread. Starting a thread automatically generates a call to
// the run() method.
finished = false;
String appletName = new String(this.getName());
if (thread == null) {

thread = new Thread(this);
thread.start();

}

The run () method in Tumor03 is analogous to the growTumor () method in

previous versions; it is here that most of the simulation processing takes place and is the

heart of Tumor03. It is here that cancer cells are replicated, tracked and painting of the

tumor projection is initiated. Each cell's position within the growth space is tracked with

a dynamic Java container of the class vector. An instance of vector (ceiivector) is

created at runtime with a length of 512 objects. That is, ceiivector can initially contain

512 of "anything." In this simulation, ceiivector holds one or more cancerCeii

objects. The initial length of ceiivector will accommodate 28cells, or eight population

doublings, before it is required to grow. When it does grow, it adds the capacity to store

512 new objects.

After the ceiivector object is instantiated, a new cell is created and placed in the

ceiivector. The program then enters a loop and cycles through the code in the loop the

number of times specified by the POP_DOUBLES constant found at the beginning of the

source code. The basic algorithm for the remainder of the code is provided in Listing

4-3.

51

www.manaraa.com

Listing 4-3: Tumor Growth Algorithm in Tumor03

1. Perform the following POP_DOUBLES times:
A. Perform the following for each parent cell in the tumor
(cellVector):

(1) Get a random direction of travel
(2) Travel in the specified direction in 3-D space until a free
space if found
(3) Create a new cancer cell
(4) Assign the coordinates of the free space to a new cancer cell
(5) Place a 1 in the growthSpace cube at the new coordinates
(6) Place the new cancer (daughter) cell at the end of cellVector

B. If all parent cells have been replicated, update pointers to show
that all daughter cells are now parent cells.

C. Update the screen with a count of the number of cells in the tumor
2. Set the finished flag to true
3. Paint the screen with the tumor projection
4. Stop

Note that since we are now using 3-D space for the tumor growth, there are 26

possible directions of travel for the new cell. As before, a uniform random number is

drawn and compared to a list of numbers in the look-up table rDirection (random

direction) contained in the class ceiiDirection.

Table 4-4 is representative of the rDirection object found in the Java code.

Table 4-4: Lookup table used in class CeiiDirection

| Index Cell Value |) < 1 Y | Z
0 0.038462 0 0 -1
l 0.076923 0 1 -1
2 0.115385 1 1 -1
3 0.153846 1 0 "-1
4 0.192308 1 -1 -1
5 0.230769 0 -1 -1
6 0.269231 -1 -1 -1
7 0.307692 -1 0 -1
8 0.346154 -1 1 -1

(disallowed) 0 0 0
9 0.384615 0 1 0

10 0.423077 1 1 0
11 0.461538 1 0 0
12 0.500000 1 -1 0
13 0.538462 0 -1 0
14 0.576923 -1 -1 0
15 0.615385 -1 0 0
16 0.653846 -1 1 0
17 0.692308 0 0 1
18 0.730769 0 1 1
19 0.769231 1 1 ', 1
20 0.807692 1 0 1
21 0.846154 1 -1 1
22 0.884615 0 -1 • 1
23 0.923077 -1 -1 1
24 0.961538 -1 0 1
25 1.000000 -1 1 1

52

www.manaraa.com

After a random number is drawn, it is compared to each Cell Value in the lookup

table, starting with the lowest index. If the random number exceeds the cell value, the

index is incremented and a comparison is made with the next cell in the table. The

uniform distribution is on the interval (0,1], so the random number will always be less

than at least one of the numbers in the lookup table. Also note that "cell" in the context

of the lookup table refers to a histogram cell from a uniform distribution. Figure 4-10

summarizes the relationship between the various objects used in this version of

CancerSim.

cellVector

cellDirection
Direction of cell
movement based

upon uniform random
number.

Figure 4-10: Tumor03 Object Relationship Diagram

53

www.manaraa.com

4.3.4 Embellishments

4.3.4.1 Overview

The purpose of embellishments to Tumor03 is to continue to scale the tumor

growth model. That is, provide the capability to adapt the model to more complex

simulations and provide more user control over the simulation parameters. The first

embellishment, Tumor03_l is a relatively minor enhancement that allows the tumor

projection to be viewed from all three axes. Tumor03_l also represents the final

implementation of the applet interface. The next embellishment, Tumor04, represents a

major departure from the applet paradigm that uses Web browsers to load and start the

tumor growth. Also, Tumor04 is a significant effort that takes advantages of Java

Swing, an extension to the AWT that precludes the use of the applet interface. Swing

components offer some advantages over their AWT counterparts and include complex

interface objects that offer ease-of-use enhancements not found in the AWT. While

many of the advanced components are not used here, they form a foundation for future

development. Additionally, Swing offers what is referred to as a "pluggable look and

feel." In a nutshell, this feature allows identical appearance and behavior of Java

applications on any computer platform.

The model Tumor04 and its variations Tumor04_l and Tumor04_2 offer an

interface that allows the user to specify certain tumor growth parameters suggested in

Bassham's work. More detail on the embellishments to the 3-D model that were detailed

in paragraph 4.2.3 is provided in the paragraphs that follow. First, physical modifications

to the model are presented. Next, the effective changes in model behavior are described.

54

www.manaraa.com

Finally, this section will conclude with comments on the expected behavior of these

embellishments.

4.3.4.2 Model Modifications

While the capability to view the tumor projection is considered useful—or at the

very least, interesting—the basic 3-dimensional model only allows a projection along the

z-axis. Tumor03_l extends the summation of the z-axis cell count to the x- and y-axes.

To simply the procedure for cycling through the projections, a system event listener was

added to the model to monitor user mouse clicks.

An event listener is a Java construct that allows specific action to be taken

automatically after the occurrence of a given event. In this instance, the event is the click

of a mouse while the mouse pointer is positioned over the projection. This enhancement

allows the user to click on the tumor window to display the next axis projection. Figure

4-11 shows the UML diagram for the cancersimAppiet class, which is the only class

that required changes for this particular embellishment.

Note that the only change to the attributes of this class was the exchange of a

tempCeli for axis. The object that temporarily held a cancer cell was no longer required

in the main declaration of the class, and the axis attribute is added to identify which of

the three axes needs to be displayed. The method compartment of the class diagram

shows the addition of seven mouse event methods, only one of which is used. The reason

for including the six additional method signatures is explained in the Java source code for

Tumor03 1.

55

www.manaraa.com

CancerSimApplet

thread : Thread = null
X_DIM : int = 400
Y_DIM : int = 400
SCALE : int = 4
POP_DOUBLES:int=18
appletWidth: int
appletHeight: int
cellWidth: int
cellHeight: int
cellDepth: int
growthSpace QQQ: char
xPos: int
yPos: int
zPos: int
cellVector: Vector
cancerCell: CancerCell
tPoint: Point
cellValue: int
cScale: int
cellDirection: CellDirection
finished: boolean
axis : int = 1

init (): void
update (g : Graphics): void
paint (g: Graphics): void
start (): void
run (): void
mouseEntered (e: MouseEvent): void
mouseExited (e: MouseEvent): void
mouseReleased (e: MouseEvent): void
mouseMoved (e : MouseEvent): void
mousePressed (e : MouseEvent): void
mouseDragged (e : MouseEvent): void
mouseClicked (e: MouseEvent): void
getParameterlnlo (): StringQQ

Figure 4-11: Tumor03_l modifications
to CancerSimApplet class

The next embellishment to the 3-D model is realized in Tumor04. This model

represents a significant departure from the previous model, not only in the "look and

feel" of the user interface, but in the basic architecture as well. While we were able to

continue using virtually every aspect of the previous version as the basis for this model,

there were major enhancements to the existing classes and new classes were introduced.

The main class, cancersimApp, for example, no longer has many of the responsibilities it

did in the previous model. In Tumor04, this class is relegated to simulation setup, such

as creating an instance of the control panel and passing the default simulation parameters.

56

www.manaraa.com

Figure 4-12 shows the UML class diagram for Tumor04. Note that the main class

cancerSimAppiet was renamed to cancersimApp and the tumor growth functionality

held by the CancerSimAppiet class was placed in the cancerTumor class, which is new

with this embellishment.

CancerSimApp

DEFAULT_X_DIM : hit = 400
DEFAULT_Y_DIM: inl= 400
DEFAULT_POP_DOUBLES : int = 18
DEFAULT_SCALE : int = 4
packFrame: boolean = false
$ control Panel: ControlPanel

main (args: StiingD): void

Cell Direction

$ rflef: int = 0
$X:int-1
$Y:int = 2
$Z:int = 3
$ tPoint: Point» = (0,0,0)
$ rDirectonfJO: double = {See documentation.

getDlrectionO: Point3t

is accessed by

ControlPanel

popDoubles: int
cellSize: int
cellWJdth: Int
cellHeight: int
cellDepth: int
windowWidth: Int
windowHeight: int
firstCellX: int
firstCellY: Int
firslCellZ: int
tumoiWindow: TumorWIndow
cancerTumor: CancerTumor
{See source files for additional attributes related to the GUI
components within the control panel.}

jblnitO: void
processWindowEvent (e: WindowEvent): void
run (xDim, yDim, popDoubles, cellSize: int): void
startButton_actJonPerformed (e: ActionEvent): void
stopButton_actionPerformed (e: ActionEvent): void
jCheckBox_ShowTumorWindow_actionPerfomied (e: ActionEvent): void
jRadioButtonjcAxis_actionPerforrned (e: ActionEvent): void
jRadioButton_yAxis_actionPerformed (e: ActionEvent): void
jRadioButton_zAxis_actionPerformed (e: ActionEvent): void

displays

TumorWindow

colorChart Q: Color
WINDOW_TITl£: String = Tumor Projection: ■
panel: JPanel
face BD: byte
$ cellSize: Int
$ cellWidth: kit
$ cellHeight: int
$ cellDepth: Int

Jblnlt 0: void
setCotorChart (cubeWidth: Int): void
repaint (face: byte DO; cellSize, cellWidth, cellHeight, cellDepth: int): voic
update jg: Graphics): void
paint (g: Graphics): void

CancerTumor

cellCount: int = 0
stopTumor: boolean = false
popDoubles: int
cellSize: int
growthSpace DOO: byte
cubeWidth: int
cubeHeight: int
cubeDepth: int
xPos: int
yPos: Int
zPos: int
cellDirectlon: CellDirection
tPoint: Points
tumorOrigin: Point3f
tumor: Vector
cellDistance: float
sumDistance: float
meanDlstance: float
maxDistance: float = 0
currentTime: Date
startTime: long
stopTime: long
elapsedTime: long

init (): void
setCellCount (): void
getCellCount (): Int
setStop (condition: boolean): voic
getStop (): boolean
getFaceX (): byte DO
getFaceY (): byte DD
getFaceZ 0: byte DD
run (): void

consists of I

location: Polnt3f
isAIEve: boolean = true
canDivide: boolean = true

Init (xPos: float, yPos: float, zPos: float): void
setLocalion (xPos, yPos, zPos: float): void
getLocation 0: Points
setlsAlive (condition: boolean): void
getlsAlive 0: boolean
setCanDivide (allowed: boolean): void
getCanDivide 0: boolean
divide 0: void

Figure 4-12: Tumor04 Class Diagram

57

www.manaraa.com

The other obvious change to the model is the elimination of the Point class and

the introduction of Tumorwindow. This version of the model also completes the transition

to Point3f, a class alluded to at the first mention of the 3-D model, and which is required

for performing calculations in 3-D space.

The behavior of Tumor o 4 and the data flow within the model (between objects)

are explained in detail in section 4.3.4.3. It should be apparent that the introduction of

the cancerTumor class shows the desire to move toward a model whose architecture and

behavior appear to emulate that of a real world entity.

The next enhancement is an attempt to remove the overhead associated with a

static 3-D growth space. Specifically, Tumor04_i removes the growthspace cube from

the CancerTumor class to reduce the computer memory overhead associated with

simulating the growth of large tumors. In this context, "large tumor" is a tumor

containing greater than 220 cells. Using the current 3-D model, 220 cells requires

1003growthSpace. This modification removing the growth space cube was made with

very little change to the CancerTumor class and a diagram will not be shown here.

The final model presented in this thesis reintroduces the growthspace object but

alters the context of the tumor growth. Tumor 04_2 implements a subset of the work

presented by Palmari, et al (1997). The tumor growth in Tumor04_2 is based on time and

each cell goes through three distinct phases before entering mitosis. This model again is

relatively more complex than previous models; thus, a diagram is provided for

clarification. The UML class diagram for Tumor04_2 is provided in Figure 4-13.

58

www.manaraa.com

CancerSimApp

$ VERSION : String = "4.2"
DEFAULT_X_DIM : int = 400
DEFAULT_Y_DIM : int = 400
DEFAULT_TIME : int = 400
DEFAULT_SCALE : int = 6
packFrame : boolean = false
$ controlPanel: ControlPanel

has

CancerTumor

cellCount: int = 0
cellsAlive : int = 0
stopTumor: boolean = false
simTime: int
cellSize: int
growthSpace QQD : byte
cubeWidth : int
cubeHeight: int
cubeDepth: int
xPos: int
yPos: int
zPos: int
cellDirection : CellDirection
cellRules : CellRules
tPoint: Point3f
tumorOrigin : Point3f
tumor: Vector
cellDistance : float = 0
sumDistance : float = 0
meanDistance : float = 0
maxDistance : float = 0
currentTime: Date
startTime: long
stopTime: long
elapsedTime: long
timeData : DataManagement
timeList: Collection (ArrayList)

init()
setCellCount()
getCellCount()
setStop()
getStop()
getFaceX()
getFaceY()
getFaceZ()
run()

VX

\ has

DataManagement

ControlPanel

simTime: int
cellSize: int
cellWidth: int
cellHeight: int
cellDepth: int
windowWidth : int
windowHeight: int
firstCellX: int
firstCellY: int
firstCellZ: int
tumorWindow: TumorWindow
cancerTumor: CancerTumor
{ See source files for additional attributes related to the GUI
components within the control panel.}

jblnitO
processWindowEvent()
run()
startButton_actionPerformed()
stopButton_actionPerformed()
jCheckBox_ShowTumorWindow_actionPerformed()
jRadioButton_xAxis_actionPerformed()
jRadioButton_yAxis_actionPerformed()
jRadioButton_zAxis_actionPerformed()

displays

TumorWindow

colorChart Q : Color
WINDOW_TITLE : String = "Tumor Projection:"
panel: JPanel
face DD : by|e

$ cellSize : int
$ cellWidth: int
$ cellHeight: int
$ cellDepth: int

jblnit()
setColorChart()
repaint()
updale()
paint()

consists of \ 1..*

CellRules

canDivide (theCell: CancerCell)

location : Point3f
celllD : int = 1
isAlive : boolean = true
age: int
timelnPhase: int
maxTimelnPhase : intQ = {10, 0, 0, 0,0}
growthPhase: byte
timeDistribution : NormalDistribution

FILENAME : String = "SimData.txt"
cancerSimDataFile: File
fileOutputStream : FileOutputStream
fileOut: PrintStream
fileOK: boolean

init()
printToFile()

CellDirection

$ rRef: int = 0
$ X : int = 1
$ Y : int = 2
$ Z : int = 3
$tPoint: Point3f=(0, 0, 0)
$ rDirectionQQ : double = { See documentation.}

getDirectionQ

CancerCell

init()
setLocation()
getLocation()
setlsAlive()
getlsAlive()
setAge()
getAge()
setTimelnPhase()
getTimelnPhase()
setGrowthPhase()
getGrowthPhase()
setMaxTimelnPhase()
getMaxTimelnPhase()
setCelllDO
getCelllDO
getCanDivide()
divide()

Figure 4-13: Tumor04_2 Class Diagram

59

www.manaraa.com

For the final embellishment, one class remains unaltered: CellDirection. From

the perspective of modification required to implement the essence of the final

embellishment, Tumorwindow is unaltered as well. There was a programming error

corrected in Tumorwindow, however, and this will be addressed in the discussion that

follows. Some classes required a broad range of modifications—from minor to major—

in order to accommodate the tumor growth context change from population doublings to

time. The classes requiring modifications include CancerSimApp, controlPanei,

CancerTumor, and CancerCell. To complete the embellishment, two classes are added:

cellRuies and DataManagement. The modifications made to Tumorwindow are

discussed first, then changes supporting the essence of this final embellishment will be

described.

A programming logic error was discovered in the Tumorwindow class for models

Tumor04 and Tumor04_i, which resulted in a minor code correction. When running

Tumor04 with a small number of population doublings, below 10 for example, the

contrast on the resulting tumor projection was so shallow that the tumor was difficult to

view. This same logic error caused a more severe error in Tumor 04_1, which completely

prevented the projection from being displayed. The reader will note a subtle change in

the face [] [] attribute the Tumorwindow class between Figure 4-12 and Figure 4-13. The

attribute type is changed from byte to integer. When the cell density along the axis of

projection exceeded 128, the next number entered into the projection was -127. This

resulted in incorrect contrasts. The fact that the Java primitive type byte is signed, with

valid values on the interval [-127,128] was overlooked. Changing the type from byte to

integer corrected this. The second correction improved the poor contrast of small

60

www.manaraa.com

tumors. Previously, the range of colors used to present the contrast was based on the

maximum possible tumor density. For example, a growthspace of 1503 would provide

for a maximum density of 150 cells along any axis. While this maximum was used to

calculate the contrast, the tumor growth rarely reached the maximum size allowed; thus,

poor contrast for small tumors. To correct this, the code in the class Tumorwindow was

modified to use the actual tumor density for the contrast calculation. This change results

in high contrast even for single-celled tumors. The code snippet in Listing 4-4 shows

how the contrast is calculated. It is presented at this time because understanding this

particular component is required if changes in projection contrast or color are to be made

later.

Listing 4-4: Determining the maximum contrast for a tumor projection

// Create a table of Java Color objects by determining the range of colors to
// use, and then assigning a color value to each possible value in the range.
// Inputs: Tumor density + 1.
// Return: n/a
public void setColorChart(int density) {

int cScale = (256/density); // Valid color range is 0-255.
colorChart = new Color[density]; // Create array of length = density.
// Fill color chart with color values that are multiples of cScale. The net
// effect is the use of the full range of the color scale for max contrast.
//We are using shades of white to represent the tumor density, so there is
// no need to differentiate between the red, blue, and green arguments
// passed to the Color() constructor. Instead, we will use a single,
// identical value for all arguments.
int c = 0; // Initial rgb value. Color(0,0,0) ==> black.
// Construct the color chart. No cells in the projection will show as
// black. Max cells in the projection will show as white. The number of
// cells between 0 and Max will be displayed as shades of gray from black
// to white by steps of cScale.
// For example:
// density = 8 (0-7 cells)
// cScale = 256/8 = 32
// colorChart = {{0,0,0},{32,32,32),{64,64,64},{96,96,96},{128,128,128},
// {160,160,160},{192,192,192},{224,224,224}}
for (int i = 0; i < density; i++) {

colorChart[i] = new Color(c, c, c);
c += cScale;

61

www.manaraa.com

The cancerSimApp and ControiPanel classes are the first two classes requiring

changes as a result of the shift from population doublings to time as the mechanism to

control tumor growth. All changes to these two classes are minor display labeling and

attribute name changes. Where we had DEFAUTLT_POP_DOUBLES, for example, this is

changed to DEFAULTJTIME; and popDoubies is changed to simTime. These subtle

changes are representative of the changes to classes CancerSimApp and ControiPanel.

More extensive changes were made to the CancerTumor and CancerCell classes.

The CancerTumor class added four and changed one attribute:

1. ceilsAiive was added. This attribute tracks the number of living cells in the
tumor.

2. ceilRuies is an instance of a new class. This object contains the behavioral
rules for a cancer cells.

3. timeData also is an instance of anew class, DataManagement. This class
contains the method necessary to write data to a disk file.

4. timeList was added to track time stamps during tumor growth.
5. popDoubies was renamed to simTime to account for the context change

mentioned earlier.

The CancerCell class contains the most significant changes to the model. This class

added six attributes and corresponding "set" and "get" methods for five of the six new

attributes:

1. ceiiiD gives each new cancer cell a unique identifier.
2. age represents the age of the cancer cell, in time units, since it was created.
3. timeinPhase is similar to age. It represents the amount of time spent in a

particular phase.
4. maxTimeinPhase indicates the maximum amount of time allowed in each of

four distinct cell phases.
5. growthPhase tracks the growth phase of the cancer cell.
6. timeDistribution is an instance of NormaiDistribution, a drop-in object

from OpsResearch.com (http://www.opsresearch.com/OR-
Objects/index.html). This object creates a normal distribution with a mean of
u\ and a standard deviation of a. It is used to determine maxTimeinPhase.

62

www.manaraa.com

The methods required to access these attributes are not described here. Section 4.3.4.3

describes the behavioral aspects of the model changes described above.

4.3.4.3 Process Modifications

The tumor growth and projection processes for embellishments Tumor03_l,

Tumor04, Tumor04_l, and Tumor04_2 are summarized in Listing 4-5.

Listing 4-5: Tumor growth process for 3-D embellishments

1. Initialize the simulation growth space, projection window, and cell size
2. Place the initial cell in the growth space (if applicable)
3. Perform the following steps the number of times specified by the population

doubles or simulation time parameters:
A. Perform the following for each parent cell in the tumor:

(1) If time-based, go to (a), else go to (2)
(a) If in Mitosis, go to (2)
(b) If time in phase exceeds maximum time in phase, go to next phase
(c) Go to step 3.A.

(2) Get a random direction of travel
(3) Travel in the specified direction in 3-D space until a free space if

found
(4) Create a new cancer cell; if time-based, randomly determine the amount

of time to spend in growth phase Gl
(5) Assign the coordinates of the free space to a new cancer cell
(6) If growthSpace cube is used, place a 1 at the new coordinates
(7) Place the new cancer (daughter) cell at the end of cellVector

B. If all parent cells have been replicated, update pointers to show that all
daughter cells are now parent cells

C. If applet-based, update the screen with a count of the number of cells in
the tumor

4. Set the finished flag to true
5. Paint the screen with the tumor projection. If model Tumor03_l or later, allow

projections from all three axes
6. Stop

Model Tumor03_l is identical in operation to Tumor03 except that a projection

from any of the three axes may be displayed. This is accomplished by adding the Java

mouse event listeners that were described briefly at the beginning of paragraph 4.3.4.2.

When the user clicks the mouse button anywhere in the projection window, the projection

is changed from one axis to the next. The projections may be cycled from the x-axis, to

the y-axis, to the z-axis, and then back to the x-axis.

This concludes the extent of the process changes characterizing the first

embellishments to the basic 3-D model. The next paragraphs describe the process

63

www.manaraa.com

changes inherent in the transition from an applet to an application, along with the

applicable behavioral embellishments.

After transitioning from the Java Applet class to a standalone application, we

now have more control over the simulation operation, including the parameters used in

defining the tumor growth environment. Starting with model Tumor04, the user is

presented with a GUI control panel containing common user interface (UI) components:

push buttons, check boxes, radio control buttons and text boxes. Tumor growth is

initiated by pressing the start button, and pressing the stop button interrupts the growth.

To display the tumor projection, a check box is selected; pressing one of three radio

buttons changes the axis of view. The control panel is shown in Figure 4-14. The

parameters section of the control panel contains the default settings for Tumor04_l.

fk'jCancerSim
rProoress-

B@B;

DouWSng:-.:

.09»

Parameters ;—f-rr~-—i [-Projection

'. Population Doubles'. jjTj

\t-y - -Ceil Resolution • |4|

Start1
I * - -1 i

"Stop

II

I WindowResolution:."'"'" '■ '•■';
'. x|4Ööj-. r(4Ö^i

I n Show Tumor:{.

;«>x OY Oz

Figure 4-14: CancerSim Control Panel (Tumor04, Tumor04_l)

After tumor growth is initiated by pressing the start button, the behind-the-scenes

growth process is identical to that of Tumor03 and Tumor03_l. The only variation is that

timestamps are taken at the beginning and end of each population doubling, and the

difference is sent to the Java session's DOS window as a number. These time stamps,

which are presented in seconds, represent the elapsed time of each population doubling.

64

www.manaraa.com

Once the simulation is complete, the start button is enabled to allow for another

simulation run.

The process for Tumor04_l produces results identical to that of Tumor04. While

the starting procedures and results are identical, the underlying process is however

somewhat different. Because the growth space cube (growthspace) described in

paragraph 4.3.4.2 was removed from this model, Tumor04_l is expected to take more

time to complete each population doubling; thus, the overall simulation will take longer

to achieve the same results achieved in Tumor04. Without the growth space cube for cell

collision detection, the cell vector is scanned from element 0 to n, where n is the number

of cells in the tumor during any given cell doubling. The relationships between the

objects in Tumor04_l are represented in Figure 4-15. The components in this figure

should be compared to Figure 4-10.

Projection Window

Sum of cells along z-axis
Sum of cells along x-axis 0 0 0 0 0 0

0 0 0 o | o 1 o 1 0 0 1 if 1 .
0 0 1 .1-1.1 3 2 I Translate

j numbers ft
shades of
gray

[■■> '

0 1 3
sum OT ceiis aiong y-axis

2 A
0 0 0 0 0

0 1 2
0

D 1 1,'
0 1 1 0 0

0 0 1
0) 0

—i
""I

1 3 2 1 0
0 0 0

0 ^ , ''
1 2 2 1 0 0

0 1 1 0 0

I BUB!
0 0 0 0 0 cancerCell

cellVector #

cellDirection _

Direction of cell
movement based

upon uniform random
number.

h Usa directiönj HIKI new;pOHifö]£i

Figure 4-15: Tumor04_l Object Relationship Diagram

65

www.manaraa.com

One of the objectives of this thesis is to model the somewhat atomic behavior of

individual cancer cells. This behavior, in general, is expected to influence the shape and

rate of growth of a tumor. Tumor04_2 returns the growth space cube to the cancerTumor

class, but the simulation context changes from population doubling-based to a time-based

simulation. In models Tumor04 and Tumor04_l, the ceiivector object is scanned from

index f irstceii to lastceii, and each cell "touched" subsequently divides (see Figure

4-5). In Tumor04_2, each pass through the entire ceiivector represents the passage of

one simulation time unit. The ceiivector object is scanned in a manner identical to the

previous models, but each cell is not automatically doubled; rather, the amount of time

the cell has spent in its current growth phase is checked. Only after the cell has reached

mitosis, phase M, is the cell doubled. The behavior for this new set of rules is outlined in

Figure 4-16. Notice that the amount of time spent in each phase is determined by a

random draw from a normal distribution. The entire process can be described as follows:

When the first cell is created, its age and time in phase (TIP) are set to zero. The

maximum time that the cell is allowed to remain in the first phase (Gl) is a random draw

as shown in the diagram. Once the growth process starts, each cell in the ceiivector is

examined, its age and TIP incremented, and then the TIP is examined to see if it exceeds

that maximum TIP. If so, the cell is "told" to enter the next phase. This process repeats

for each cell in ceiivector the number of times specified by the user at the start of the

simulation.

Due to the fact that the parent cells are no longer divided at what was essentially

the same time, it is expected that the resulting tumor's shape will be less spherical than

tumors in previous models. Additionally, the time spent in each phase leading up to

66

www.manaraa.com

mitosis acts as a time delay, so growing larger tumors should take longer than with

models prior to Tumor04_l. The paragraph that follows summarizes the models

described in this chapter.

Crtalr Nn» CHI
Age, TIP = 0

Max(TIP)~N(12,0.75)

Yes

\

[f Max = 0, tbcn
Max(TIP)-N(7, 0.75)

Function of CancerCell

Function of CellRules

■/

Yes

LEGEND

Age • Age of celt (in time units)

Max - Maximum lime allowed is
Growth Phase (01, S.G2, M)

TIP - Time in Phase. The TIP is
incremented each time the cell is
probed' by the tumor

Gl -Prepare for DNA replication
S • DNA synthesis and doubliog
G2 - Prepare for mitosis
M - Mitosis (cell doubling)

G2
If Max = 0, then

Max(TIP)-N(8, 0.75)

Mai?^ «wYes ,

• '
•

M
If Mil = 0, till

Mn(TIP)-N(l.5.0.S)

•

No ^^TIP> M«7 ^S^ Yes'

/

Figure 4-16: Simulation flow chart (Tumor04_2)

67

www.manaraa.com

4.3.5 Summary

Seven models were developed in this effort. The fundamental ideas behind the

design of each model were explained, the architecture of each model was presented, and

the expectations described. Table 4-5 summarizes the models discussed in this chapter

and provides brief comments on the characteristics that differentiate them from the other

models. The chapter that follows shows the results of running each model. Ultimately,

we determine which model best meets the objectives described at the beginning of this

thesis.

Table 4-5: CancerSim model summary

Model Java Classes Remarks; >:"-• c....>'-\ ..vC-...,-;4-
TumorOl Tumor Applet 1 Snake-like 2-D tumor growth; Java applet implementation
Tumor02 CancerSimApplet

CancerCell
Correct implementation of 2-D model presented by Bassham; tumor
growth delayed for viewing purposes

Tumor03 CancerSimApplet
CancerCell
CellDirection
Point

Implementation of Bassham's 3-D model; density projection
enhanced through use of red shading; use of color produced visual
side effect causing projection to appear 3-D

Tumpr03_l CancerSimApplet
CancerCell
CellDirection
Point

Changed color shading from red to gray, mitigating visual side effect;
added capability to view all three projections; user changes view by
clicking mouse on tumor projection

Tumor04 CancerSimApp
CancerTumor
CancerCell
CellDirection
ControlPanel
TumorWindow

Removed Applet class and implemented as standalone application;
shifted majority of work to cancer tumor object; created GUI control
panel that allows user to start and stop growth and change growth
parameters; added projection window that may be turned on or off
and placed anywhere on the computer desktop; timestamps are output
to a DOS box to show the elapsed time for each population doubling

Tumor04_l CancerSimApp
CancerTumor
CancerCell
CellDirection
ControlPanel
TumorWindow

Removed 3-D growth space object (cube) from CancerTumor class
and performed cell collision detection strictly using the cell container;
growth slowed significantly over previous model

Tumor04_2 CancerSimApp
CancerTumor
CancerCell
CellDirection
ControlPanel
TumorWindow
CellRules
DataManagement

Returned 3-D growth space object (cube) to CancerTumor class;
added class to control cell behavior by defining rules for the cell
growth cycle; added class to facilitate data collection by saving data
to an external file

68

www.manaraa.com

V. Analysis and Recommendations

5.1 Overview

This chapter presents the results of the models developed in the previous chapter.

Execution of each model will be described and the output shown. Comments on the

actual results versus the expected results are provided, and comparisons with Bassham's

work are made when possible. Where appropriate, mathematical analysis of the results is

accomplished. Finally, recommendations on areas of improvement to these models are

made.

5.2 Two-dimensional Tumor Models

We mentioned in the previous chapter that the development of the initial models

serves several purposes, one of which is to provide a proof-of-concept demonstration for

the translation of Bassham's MatLab™ model to Java. That is, initially, we wanted to

show that Bassham's model could be replicated in the Java environment. To make this

comparison, we run a simulation using the first model, TumorOl, and provide the

following initialization parameters:

S X_DIM = 400
S Y_DIM = 400
S SCALE = 1
S POP_DOUBLES =12

These parameters provide a 4002 growth space and 212 cancer cells at a resolution

of one pixel. Using these parameters, the simulation was run using the latest versions of

two of the more popular Web browsers: Microsoft Internet Explorer and Netscape

Navigator. Precise time measurements were not made, but the tumor growth completed

successfully in just a few seconds under both browsers.

69

www.manaraa.com

The first model was successful in providing a limited simulation of the growth of

a breast cancer tumor in 2-D space, and the results were interesting. The results were so

interesting, in fact, that it took some time to determine that there was actually an error in

the code used for the simulation.

After placement for the first cell, the process of a population doubling begins.

The growth space is searched and the first (only) cell is found and it divides. For the

second population doubling, two cells exist; therefore, two cells divide. The error in the

algorithm prevents each cell in the population from doubling as designed; rather, the last

cell placed is the one cell that is always divided. The intended process is shown in Figure

5-1, while the erroneous process is shown in Figure 5-2.

First Cell

■

Hirst Uoub ling

i J
Second Doubling

~PTf

Figure 5-1: TumorOl population doubling (expected)

First Cell

■

Hrs 5tD out line Sec :on iL) DUD ling

J I im

Figure 5-2: TumorOl population doubling (actual)

The result of tumor growth using model TumorOl is shown in Figure 5-3.

70

www.manaraa.com

Figure 5-3: TumorOl results

The irregular and interesting shape from this simulation is caused by the snake-

like growth depicted in Figure 5-2. The logic error discovered in TumorOl is ultimately

corrected in Tumor02.

The parameters and behavior of the 2-D model were changed slightly so that

growth could be observed. The specific changes made to Tumor02 are described in the

previous chapter. The default parameters for this simulation are as follows:

S X_DIM = 400
S Y_DIM = 400
S SCALE = 4
S POP_DOUBLES =11

These parameters provide a 1002 growth space and 211 cancer cells at a resolution

of four pixels. Using these parameters, the simulation was again run using the Web

browsers identified earlier. For demonstration purposes, a 10-millisecond time delay was

introduced into the tumor growth process. This delay occurs after each cell division and

prior to a screen update. Because the screen update commands are queued, the screen is

not necessarily updated after each cell divides. Even with this delay in place, the entire

simulation is completed in 30 seconds or less.

71

www.manaraa.com

After confirming that the model appeared to be performing as expected, it was run

again using parameters similar to those used by Bassham's Tumor5 model: 360, 360, 9,

8. These parameters provide a 402 growth space and 28 cancer cells at a resolution of

nine pixels. Note in Figure 5-4 the similarities between Tumor02 and the results obtained

by Bassham. The algorithm itself for Tumor02 was again compared to Bassham's 2-D

algorithm and the Tumor02 implementation appears to be correct. This assertion is

supported by the visual comparison.

Figure 5-4: Tumor02 results [left] compared to Bassham's TumorS

We now make the assumption that Bassham's 2-D tumor growth algorithm is

correctly implemented, and we proceed with the results of the 3-D algorithm.

5.3 Three-dimensional Tumor Models

The evolution of the tumor growth model advances using the same algorithm

shown in Figure 5-2, except that it is applied to 3-D space. That is, instead of limiting a

new (daughter) cell to movement in the x-y plane, a daughter cell may now be placed

along the z-axis as well. In addition to the 3-D growth, variations in color were added to

enhance the visual representation of the tumor.

72

www.manaraa.com

The default simulation parameters using the Tumor03 model are as follows:

^ X_DIM = 400
S Y_DIM = 400
S SCALE = 4
S POP DOUBLES =18

These parameters provide a 1003 growth space and 218 cancer cells at a resolution

of four pixels. Using these parameters, the simulation was again run using the Web

browsers identified earlier. Despite eight additional population doublings, the simulation

continues to run rather quickly, consistently turning in times of under 30 seconds. Time,

however, is only a minor consideration. Of greater importance is that the first of the 3-D

models under Java achieved 218 cells where the MatLab™ counterpart achieved 212 cells

before running into difficulty.2 The results of Tumor03 are shown in Figure 5-5.

Figure 5-5: Tumor03 results

2
Using the Student Edition of MatLab™.

73

www.manaraa.com

Not readily apparent here is an unintended side effect of the choice of color and

shading. When viewed using the Java Applet Viewer or a Web browser, the tumor result

has an uncanny 3-dimensional appearance, despite the fact that is a density projection and

should appear flat, or 2-dimensional. Also note the nearly perfectly spherical shape of

the tumor. Given that our algorithm chooses a direction of travel based upon a uniform

distribution without consideration of body tissue or the density of co-located cells, this is

expected.

Despite the interesting 3-D artifact from the choice of colors used in the

projection, the visual result deviates from what was intended; therefore, the use of colors

was altered for the next model, Tumor03_l.

The results of Tumor03_l are identical to that of Tumor03. Recall from the

previous chapter that Tumor03_l merely incorporated minor changes to allow the user to

view the projection from any of the three axes, and it also changed the color from shades

of red to gray, as alluded to in the previous paragraph: The latter modification was

intended to mitigate the 3-dimensional effect of Tumor03 and provide a more x-ray or

mammogram-like appearance.

Figure 5-6 contains the results of the modifications applied to Tumor03. The

default parameters for Tumor03_l are identical to the defaults for Tumor03. Note the

uniformity of the projections. Again, given that the direction of travel continues to be

randomly drawn from a uniform distribution, this is expected.

74

www.manaraa.com

^i^^SB
Bp1" - •-s53BI

^^^^^^^^^^BE^^P* ■iväfäH
Bt. ^^380

B&..''

Figure 5-6: Tumor03_l density projections along the x-, y-, and z-axes

The use of multiple projections in Tumor03_l provided a useful transition to the

next phase: implementation of a graphical user interface without reliance on the Java

Applet class. The intention was to transition to a standalone Java application utilizing

GUI components and the Tumor03_l framework. As a reminder, the desire to move

away from the use of Web browsers, and thus Java applets, as an implementation vehicle

for the more complex models is borne of the inconsistencies in the support of Java Swing

components. The development of Java and its enhancements has far outpaced browser

development and support. As we mentioned in the previous chapter, Java Swing

components are considered essential for developing a sophisticated interface to the

simulation models.

The transition from the applet environment to a standalone Java application was

successful in that the model required only minor rework and the addition of two classes

for the GUI components: one class for the control panel and another class for the tumor

projection window. Figure 5-7 shows the simulation environment for Tumor04. Absent

is the tumor projection window.

75

www.manaraa.com

M^JI.'»IHJg^!JJUIllJll»JWUIJJI^M^^iUIJa

Tumor growth started with 13 population doublings
Cell resolution: 3 (pixels)
bjindow resolution: 133 x 133 (cells)
First cell positioned at So, 6S. 66

Doubling 1 elapsed time:
Doubling 2 elapsed time:
Doubling 3 elapsed time:
Doubling f elapsed time:
Doubling 5 elapsed time:
Doubling S elapsed time:
Doubling 7 elapsed time:
Doubling S elapsed time:
Doubling 9 elapsed time:
Doubling 1Q elapsed time:
Doubling 11 elapsed time:
Doubling 12 elapsed time:
Doubling 13 elapsed time:
Doubling 14 elapsed time:
Doubling 15 elapsed time:

| £H CancerS im

E-cis»!iiia fe»

fay:, '!■ vCeN Rasoftititini :;.1 3|J

b-'CSij-'E
i ^f....; Wnttovfr Restrtufon;. ■-, '.;'"■» ■}

•«■ ia:! i^gSTsttSw träft

Figure 5-7: Tumor04 GUI and DOS window

Note that this version of the model offers the capability to alter the four

simulation parameters that were previously hard coded in the simulation. For the sake of

a visual comparison with one of Bassham's models—specifically model Tumor3d—the

simulation was run with the following parameters:

S X_DIM =200
V Y_DIM =200
S SCALE = 8
S POP_DOUBLES = 8

These parameters provide a 253 growth space and 28 cancer cells, which is

identical to the test presented in Bassham's work. There are two points to be made

concerning this model. The first is that the transition from the Java Applet class to a

standalone application gave us a tremendous boost in performance. Using the above

76

www.manaraa.com

parameters, for example, a simulated 3-dimension tumor was grown in approximately

one second. This reduction in the amount of time it takes to grow a tumor proves useful

for larger models. The second point is that we again achieved startlingly similar, yet

expected, results when compared to Bassham's Tumor3d. Figure 5-8 is the DOS window

output from a sample run of Tumor04.

Figure 5-8: Tumor04 sample DOS box output

The output to the DOS window provides several pieces of information that prove

useful to understanding if the model is operating as expected. First, we note that the

parameters used to start the simulation are echoed to the DOS window. Second, the

output shows the position of the first cell. Recall that the location of the first cell in 3-D

space is derived from the widow and cell resolutions. Third, in this example, the elapsed

time from each population doubling is calculated and displayed. Finally, the example

above makes use of the Java3D library that was discussed in the previous chapter. This

library includes methods for calculating distances in 3-D space. We see above that some

of the library methods were used to calculate maximum and mean tumor radius.

77

www.manaraa.com

Figure 5-9 shows a sample of the visual output from Tumor04 as compared to

Bassham's Tumor3d. The titles of the projections have been clipped due to the small size

of the projection window. Also note the terminology used in Bassham's models. Where

Tumor04 uses projection views of X, Y, and Z, Tumor3d uses "front," "overhead," and

"side." Projections from the Tumor04 and Tumor3d models are read in the same manner:

lighter areas of the projection indicate greater density.

Figure 5-9: Tumor 04 [upper projections] and Bassham's Tumor3d [lower projections]

Despite the advances of Tumor04 over the MatLab™ counterparts, tumors

containing greater than 220 cells presented themselves as a memory resource challenge

even to personal computers equipped with extra memory. On a Windows NT™

workstation with 128 megabytes (MB) of random access memory (RAM), for example,

Tumor04 was successful in generating a tumor with 220cells, but the demands on the

78

www.manaraa.com

computer's memory was evident. To test the demands on RAM, Tumor04 was rerun

using the following simulation parameters:

S X_DIM = 400
S Y_DIM = 400
•" SCALE = 2
S POP DOUBLES =20

These parameters provide a 2003 growth space and 220 cancer cells. We are able

to achieve impressively low simulation times with large tumors because of the use of the

growth space cube described in the previous chapter. However, with a growth space of

2003, the system requires a minimum of 8,000,000 cells x 32 bits, or approximately

32MB of RAM just for the growth space.

This memory overhead does not include the space required for the cancer cells

themselves, nor does it include system resource allocated to the cell vector or any of the

GUI components, including the matrix overhead associated with projecting the tumor

once growth is complete. Clearly if we are to achieve larger tumor growths, we must

make better use of the memory available on even the most modestly configured

workstation.

Using the parameters specified above, the system began to slow when the 19th

population doubling was approximately 50 percent complete. At this point, the estimated

number of cells would be |218, or approximately 393,216 cells. The growth to 220cells

was successful, but an error occurred when an attempt was made to show the projection.

In general, the amount of memory required for displaying the tumor projection is not

significant, but in the case described above, the memory consumption was just enough to

remove the last of the remaining system resources.

79

www.manaraa.com

At 220 cells, the size of the tumor is still far short of the 224 cells required for

detection by mammography, and these last four population doublings may be most

difficult to achieve given the typical computer RAM constraints outlined above.

Nevertheless, the model is extremely fast and the framework may continue to be used for

experimentation with other growth models. In order to evaluate the overall speed of the

model, 20 simulation runs were completed using 18 population doublings, the default

population doublings parameter for Tumor04. The computer environment chosen to run

the simulation was a Microsoft Windows NT™ 4.0 workstation with dual Pentium

Pro/200 processors and 128MB of RAM. The results of the runs are shown in Figure

5-10.

The mean time for the 18th population doubling was 10.35 seconds, while the

cumulative mean for all doublings was 22.83 seconds. Clearly, at nearly 50 percent of

the total simulation time, we can see that, at the 18th population doubling, the simulation

begins to slow.

Tumor04_l, as discussed earlier, is a model that attempts to simulation the growth

of breast cancer tumors without the growth space cube for collision detection. The lack

of the cube to test for cell collisions should slow the tumor growth; however, just how

much slower the modification would cause a tumor to grow could not be answered with

additional time trials.

80

www.manaraa.com

Population Doubling Times (TumortM)

Figure 5-10: Tumor04 simulation results

With the growth space cube removed from the cancerTumor class, 20 simulation

runs were again completed using Tumor04_l with 18 population doublings. The

computer environment chosen to run the Tumor04_l simulation was identical to that of

Tumor04. The results of the runs are shown in Figure 5-11.

Population Doubling Times (Tumor04_1)

1DOOO-I

1000- $s

100

_
I 10

jf — »iS^"

1 '■ 53—
p

' - ' ■ —J^Z^^ --- ■■■■■■ —■■■■ ■■—™ —
^-—-^

. — — ^^ ■ ■ -■" ■ * ■*

0.001 -

Doubling | Mean — —Tolal

Figure 5-11: Tumor04_l simulation results

81

www.manaraa.com

The mean time for the 18th population doubling was 24,074.51 seconds (6.69

hours) while the cumulative mean for all doublings was 32,182.24 seconds (8.94 hours).

With this model, we notice a decrease in performance around the 14th population

doubling. Clearly, the simulation times for Tumor04_l are excessive, and dispensing

with the growth space cube while other aspects of the architecture remain the same

appears to be a poor choice. To support this assertion, we conduct a detailed analysis of

the two sets of simulation results. First, the summary data for the comparison are shown

in Table 5-1.

Table 5-1: Mean population-doubling times (in seconds)

l
'ijil:

3

5

7

9

11
12
13
14
15
16
17
18

0 .012800 0 .00705
HI aiSMö-"": 0 .00080
0 .079500 0 .00230

::s0; .::!3 53.00-;™ ■ 0 '00960
0 .106800 0 00390

: :P 129500 :i 0 00770
0 156100 0 03205
0 mmäs:^ 0 08835
0 213950 0 17500
0 252100 :.W 44615
0 308500 1 88845
0! 485900 i/ym-m. •;9M7D
0 605275 21 33350
0 974250 95 :313»
1 428750 385 22900
2 503700 sB-1506:; lOTSO:
4 848250 6091 59230

io:. 352350 : : ::240:7.4 . 51:400

Total Time 32.827925 32182.5263

We note from the tabulated data that, without the growth space cube, Tumor04_l

appears to be faster through population doubling nine. After the nine doubling, however,

the doubling times for Tumor04_l grow dramatically, and the cumulative total simulation

time for Tumor04_l is approximately 1,000 times that of Tumor04.

82

www.manaraa.com

To determine the statistical significance of the data, the differences were taken

between the mean run times of each population doubling, and the distribution of the

differences was checked for normality using the Shapiro-Wilk Test. At the 95 percent

confidence level, virtually all data are not normally distributed. This finding precludes

the use of traditional methods for determining statistical differences between the means.

Instead, we chose non-parametric methods to conduct the analysis. Specifically, the

Wilcoxon Signed-Rank Test was conducted using JMP IN® from SAS Institute Inc. Of

the 18 population doublings, only the difference in times between the first and ninth

doublings proved insignificant at the 99 percent confidence level; all remaining

differences are significant. These findings are summarized in Figure 5-12.

Figure 5-12: Comparison of simulation run times

The final model constructed for this project is Tumor04_2. Based upon the

findings above, the tumor growth space cube was returned to the cancerTumor class.

Additionally, rather than simply display simulation statistics to the DOS window, these

83

www.manaraa.com

statistics may be sent to a delimited text file for easy importing into data analysis

software. The analysis of statistics such as the elapsed time for population doublings

may now be reasonably automated. The final embellishment to Tumor04_2 is the most

dramatic in terms of the future potential for modeling cell automaton: the establishment

of a rule set for cell behavior. Before we proceed, recall that modifications included in

Tumor04_2 result in a context of simulation time as opposed to population doublings.

The default simulation parameters for Tumor04_2 are as follows:

S DEFAULT_X_DIM = 400
S DEFAULT_Y_DIM = 400
S DEFAULT_SCALE = 6
S DEFAULT_TIME = 400

These parameters provide a 663 growth space and an unknown number of cancer

cells. We wish to conduct a final test that grows the largest tumor possible within a

reasonable amount of time, so a single simulation was run using the parameter values of

400,400,4, 500, which provides us with a growth space of 1003.

The simulation was run without regard to the collection of time data; the

CancerTumor class was modified to instead capture the number of cancer cells in the

tumor at the end of each time period. These data were sent to a text file and then

imported into Mathcad® 8 Professional for graphical analysis. The results of the single

simulation run are shown in Figure 5-13. Notice the stair step effect that exists during the

first half of the simulation.

84

www.manaraa.com

Tumor Growth

o
U

U

200 250 3D

Time Unit

Figure 5-13: Simulation results (Tumor04_2)

A review of the raw data reveals that the first population doubling occurs at

t = 30. Based upon the rules established for the behavior of the cancer cells, the

expected value is as follows:

E[tdl] = E[Max(TlPGl)] + E[Max(TIPs)] + E[Max(TIPc2)] + E[Max(TIPM)]

= 12 + 8 + 7 + 1.5

= 28.5 =»29

Thus, the observed time of 30 implies that 29 time units were spent in phases Gl,

S, G2, and M. This corresponds precisely with the expected time. Note that the observed

time is consistent with the first stair in Figure 5-13. Close inspection of the second stair

step reveals that the number of cells in the tumor increases quickly from one to three.

Inspection of the raw data tells us that this occurs at time t = 58 (3 cells) and t = 59 (4

cells). This indicates that the original cell and the first daughter cell both divide at times

85

www.manaraa.com

very close to each other. Based upon the process flowchart presented in the previous

chapter, this makes sense. Note that as time increases, the time spread between when the

cells divide increases until the stair step feature of the graph is lost completely. From the

raw data, we see that by t = 270 cells are dividing at nearly every time increment. At

t = 500, the cell count is 86,125. This represents slightly over 16 complete population

doublings, where 216 = 64,536 cells. The simulation completed in approximately 50

seconds.

5.4 Conclusion

Tumor04_2 represents a short evolution and culmination of ideas of the work

presented by Bassham and others. The Java platform proved a suitable environment for

these ideas, and showed that reasonably large tumors may be grown in 3-D space in a

very short amount of time. The object-oriented approach to developing these models

should promote their understanding and facilitate additional embellishments.

Clearly, the use of a static 3-dimensional matrix in this environment provides a

fast, easy-to-use mechanism for cell collision detection; however, there is some overhead

associated with this mechanism that must be taken into consideration. These

considerations must be taken seriously as additional attributes are given to individual

cancer cells; generally, the increase in "intelligence" of a cancer cell will be directly

proportional to the amount of system resources required to maintain each cell. As the

model becomes more complex, structures such as the 3-D growth space object must be

reconsidered. What follows are some ideas on taking the next step toward fully realizing

a simulated tumor that is detectable using current mammography techniques.

86

www.manaraa.com

5.5 Recommendations

There are three recommendations for future embellishments that may pave the

way for growing and visualizing tumor sizes of 224 cells or greater. These

recommendations fall in the area system resource consumption, the types of data

structures used to manage the cancer cells, and then ultimately visualizing the tumor at

the completion of the simulation.

The analysis completed here shows that performance problems exist for large

tumors. Some of the performance problems, specifically memory allocation and

recovery, may lie in when and how objects are created and then disposed of. Dennis

Sosnoski, a senior software consultant based in Washington, has available an on-line

paper entitled, "Java performance programming, Part 1: Smart object management saves

the day." This paper provides some performance comparisons using different Java object

types. For example, the paper explains the implications of using the string class to

represent a "1" verses using the integer class. While this distinction is trivial for small

tumors, at 224 cells it could be critical.

This recommendation is made after trivial modifications were made to the model

that showed the system resource level after each simulation time increment. As the

tumor grew larger, the system resources were consumed much more quickly. Most often,

just before the point of complete consumption of all memory resources, there was a pause

in the simulation while the Java garbage collection (memory reclamation) routine went to

work. If the number and size of objects created can be limited, the memory consumption

can be reduced. Additionally, it may be possible to initiate garbage collection at points

critical to the simulation but not obvious to the garbage collection mechanism.

87

www.manaraa.com

Sosnoski's paper is readable even for the novice programmer and may provide

some insight into why the current model experiences memory resource shortages at

220population doublings, which currently is short of our objective. This paper is

available at the following Web URL: http://www.iavaworld.com/iavaworld/jw-ll-

1999/jw-l l-performance.html.

The second recommendation is related to the type of objects used to manage the

cancer tumor and cells. There are two components to the current model that may be

eliminated entirely, and the net effect could be a savings in both time and system

resources.

The only purpose of the 3-D growth space is to provide nearly instantaneous

confirmation that a candidate cell position is already occupied. As we proved in

Tumor04_l, removing this structure merely impacts the simulation time; it has no effect

on the development of the tumor itself. In Tumor04_l we performed continuous searches

of the cell vector object to obtain the same collision information. As we also proved,

however, the time required to perform these checks is unacceptable. The Java

Collections Framework may offer a solution.

Tumor04_2 introduces the Collections Framework by implementing an instance

of the ArrayList class. This class, as well as the vector class, provides the means to

easily manipulate virtually any type of object contained in the list. Included are methods

for searching lists for specific data items. Unfortunately, these classes are part of the

Java List interface, and do not automatically prevent duplicate objects—two cancer cells

with the same coordinates, for example. The Collections Framework consists of two

other interfaces that may provide a solution: The set interface and the Map interface. The

88

www.manaraa.com

Set interface is implemented with a Hashset or TreeSet, while the Map interface is

implemented with a HashMap or TreeMap. These classes offer searching and sorting

methods not available in the List interface. It may be possible to use each xyz tuple as a

unique "key" for nearly instantaneous access to the pool of cells, thereby achieving the

collision detection required for the algorithm. It is advisable that whoever chooses to

investigate the Collections Framework to review an introductory paper by the MageLang

Institute. The Collections Framework paper is available on-line at the following URL:

http://developer.iava.sun.com/developer/onlineTraining/collections/index.html.

The final recommendation is not directly related to performance; rather, it is tied

to visualization of the tumor. Visualization can be a thesis in itself and details are not

provided here. In a nutshell, the Java3D API, from which we already implement the

Point3f class, offers a multitude of multimedia extensions. These extensions include

sophisticated methods for rendering complex 3-dimensional data. One of the

recommendations made by Bassham in his thesis was related to potential surface

rendering of the tumor. Java3D offers methods for object collisions, geometry, visual

data compression, and multiple views. This just scratches the surface of what the Java3D

API might offer. Specific information regarding the user of Java3D may be found on-

line at the following URL: http://iava.sun.com/products/iava-media/3D/collateral/

89

www.manaraa.com

Appendix A: Java Source Code - Tumor04

Package Name Class Name Source Filename
Tumor04 CancerSimApp CancerSimApp.Java

1: /*
2: Title
3: Version..
4: Copyright
5: Author...
6: Company. .
7: Description

CancerSim
4 (06 Dec 1999)
Copyright (c) 1999
Capt Bruce C Jenkins (GOA-00M)
Air Force Institute of Technology
CancerSim simulates the growth of a 3-dimensional breast cancer

8: tumor. This model utilizes a static 1 x m x n cube for the tumor growth space.
9: The dimensions of the growth space depend on the pixel dimensions chosen for the

10: applet and the scale (size) of the cancer cell in pixels. After initialization,
11: a single cancer cell is positioned approximately in the center of the cube. The
12: cell's position is tracked with a dynamic, object-oriented container (Vector)
13: that is created at runtime. The number of times the container is examined
14: represents the number of population doublings that occur. For each cancer cell
15: found in the vector ("cellVector"), a new cancer cell is placed in an unoccupied
16: position in the cube ("growthSpace"). The direction in which a search for a
17: free space is conducted (there are 26 possible directions) is determined by a
18: uniform random number, which is generated each time a cell must be positioned.
19: (See the written thesis for additional documentation.) The simulation ends when
20: the number of population doublings is complete or the tumor growth has exceeded
21: the bounds of the growthSpace.
22:
23: This version of CancerSim includes the following enhancements:
24:
25: 1 In the previous version, cellWidth x cellWidth color objects were created
26: each time the tumor was painted to the screen. There was a significant amount
27: of memory and time overhead associated with this method. In this version of
28: CancerSim, the number of color objects required is reduced by
29: cellWidth*cellWidth. After the number of cells (of the face of the cube) are
30: determined, a color chart is created that contains the range of color shades
31: scaled to the maximum possible number of cells along any of the three axis.
32:
33: 2. The above code was moved to a new class: ControlPanel. This modification is
34: part of a complete restructuring of the program to take advantage of the Java
35: Swing componenets.
36:
37: 3. The applet was converted to an application for the same reason identified
38: above.
39:
40: */
41: package Tumor04;
42:
4 3: import j avax.swing.UIManager;
44:
45: public class CancerSimApp {
46:
An. i/*************************** simulation Defaults ***************************
48: private final int DEFAULT_X_DIM = 400; // Width and height of of tumor
49: private final int DEFAULT_Y_DIM = 400; // display window.
50: private final int DEFAULT_POP_DOUBLES = 18; // Population doublings.
51: private final int DEFAULT_SCALE =4; // Display cell size.
CT, //***

53:
54: static ControlPanel ControlPanel; // Simulation control component.
55: boolean packFrame = false; // Default packing of frames.
56:
57: // Construct the application.
58: // Inputs: None
59: // Return: n/a
60: public CancerSimApp() {
61: ControlPanel = new ControlPanel(); // Create a new control panel object.
62: // Pack frames that have useful preferred size info. For example, from

90

www.manaraa.com

63: // their layout.
64: if (packFrame)
65: controlPanel.pack();
66: else
67: controlPanel.validate(); // Validate frames that have preset sizes.
68: controlPanel.setVisible(true);
69: // Start control panel with defaults.
70: controlPanel.run(DEFAULT_X_DIM, DEFAULT_Y_DIM,
71: DEFAULT_POP_DOUBLES, DEFAULT_SCALE);
72: }
73:
74: // Main method. Establish the application's look and feel and instantiate
75: // the application. For consistency from platform to platform, the look
76: // and feel is set to "Metal."
77: // Inputs: None
78: // Return: n/a
79: public static void main(String[] args) {
80: try {
81: UIManager.setLookAndFeel("javax.swing.plaf.motif.MetalLookAndFeel");
82: }
83: catch(Exception e) {
84: }
85: CancerSimApp cancerSim = new CancerSimApp();
86: }
87: }

Package Name Class Name Source Filename

Tumor04 CancerCell CancerCell.Java

1: //Title : CancerCell
2: //Version : 3.1 (07 Dec 1999)
3: //Copyright..: Copyright (c) 1999
4: //Author : Capt Bruce C Jenkins (GOA-00M)
5: //Company....: Air Force Institute of Technology
6: /*Description: CancerCell is a key components of this simulation. It is
7: intended that this class have the capability to scale with the increased
8: complexity inherent in improving the CancerSim application.
9:

10: This version of CancerCell includes the following enhancements:
11:
12: - The Point class was replaced with Point3f from Java3D. This was done to
13: allow complex vector calculations between two points in 3D space.
14: */
15:
16: package Tumor04;
17:
18: import j avax.vecmath.*;
19:
20: public class CancerCell {
21:
22: Point3f location; // The xyz coordinates of the cancer cell.
23: boolean isAlive = true; // Indicates if cell is alive or dead.
24: boolean canDivide; // Indicates if cell can divided.
25:
26: // Create the constuctor so that coordinates are required at instantiation.
27: // Inputs: Coordinates for new cancer cell
28: // Return: n/a
29: CancerCell(float xPos, float yPos, float zPos) {
30: this.init(xPos, yPos, zPos);
31: }
32:
33: // Create constuctor so that no coordinates are required at instantiation.
34: // Inputs: None
35: // Return: n/a
36: CancerCell() {
37: }
38:

91

www.manaraa.com

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

// Set the current location of the cancer cell.
// Inputs: Coordinates for new cancer cell
// Return: n/a
private void setLocation(float xPos, float yPos, float zPos) {

location.set(xPos, yPos, zPos);
}

private void init(float x, float y, float z) {
location = new Point3f(x, y, z);

}

// Get the current location of the cancer cell.
// Inputs: None
// Return: Location of cancer cell
private Point3f getLocationO {

return this.location;
}

// Set the divide status of the cancer cell.
// Inputs: Boolean value indicating if cell is allowed to divide
// Return: n/a
private void setCanDivide(boolean allowed) {

this.canDivide = allowed;
}

// Get the divide status of the cancer cell.
// Inputs: None
// Return: Boolean value indicating if cell is allowed to divide
private boolean getCanDivide() {

return this.canDivide;
}

// Set the dead/alive condition of the cancer cell. If the cell is alive,
// the ability to divide is assumed.
// Inputs: Boolean value indicating if cell is alive or dead
// Return: n/a
private void setlsAlive(boolean condition) {

this.isAlive = condition;
if (this.isAlive) {

this.setCanDivide(true);
}
else

this.setCanDivide(false);
}

// Get the dead/alive condition of the cancer cell.
// Inputs: None
// Return: Boolean value indicating if cell is alive or dead
private boolean getlsAlive(){

return this.isAlive;
}

// Start the process of cell division. While in the state of dividing, a new
// cancer cell is created, it (1) determine a direction of travel, and
// (2) finds a free space into which it can place itself.
// Inputs: None
// Return: n/a
private void divide() {

if (this.canDivide) {
float x = this.location.x;
float y = this.location.y;
float z = this.location.z;
new CancerCell(x, y, z);

}
}

92

www.manaraa.com

Package Name
Tumor04

Class Name
CellDirection

Source Filename
CellDirection.Java

l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

//Title : CellDirection
//Version....: 2.0 (07 Nov 1999)
//Copyright..: Copyright (c) 1999
//Author : Capt Bruce C Jenkins (GOA-00M)
//Company....: Air Force Institute of Technology
/»Description: This class contains the methods necessary for a cancer cell to
find a free space within the tumor. A static array is used to divide the number
of possible directions of travel within the cube into evenly distributed cells.
A uniform random number is generated and a cell into which the random number
"fits" is found. The corresponding xyz tuple is then pulled and passed back to
the calling module. The tuple represents the planned direction of travel for
the cancer cell.

Modification history:

1. The user-written class Point was replaced with Point3f from the Java3D
library. Point 3f includes methods for manipulating vectors in 3-D space.
*/
package Tumor04_2;

import j ava.lang.*;
import j ava.lang.Math.*;
import j avax.vecmath.*;

class CellDirection {

static final int rRef = 0;
static final int X = 1;
static final int Y = 2;
static final int Z = 3;
static Point3f tPoint = new Point3f(0, 0, 0);

final double rDirectiont][] = statxc
{{0
{0
{0
{0
{0
{0
{0
{0
{0
{0
{0
{0
{0
{0
{0
{0
{0
{0,
{0,
{0.
{0.
{0.
{0.
{0.
{0.
{1.

0,
o,
1,
1,
1,
0,

1
1,

.038462,

.076923,

.115385,

.153846,

.192308,

.230769,

.269231,

.307692,

.346154, -1,

.384615, 0,

.423077,

.461538,

.500000,

.538462,

.576923,

.615385,

.653846,

.692308,

.730769,

.769231,

.807692,

.846154,

.884615,

.923077,

.961538,

0, -1}
1, -1}
1, -1}
0, -1}
1, -1}
1, -1}

1, -1, -1}
1, 0, -1}

1,
1,
1,
0,

1, -1,
0, -1,
1, -1,

-1,
-1,
0,
o,
1,
1,
1,
0,

-1,
-1,

000000, -1,

0,
1,
0,
1,
1,
o,

-1,
-1,
-1,
0,
1,

/ / -_2" *****
// N
// NE
// E
// SE
// s
// sw
// w
// NW
// N "Z" *****
// NE
// E
// SE
// S
// SW
// W
// NW
// "+Z" *****
// N
// NE
// E
// SE
// S
// SW
// W

-1},
0},
0},
0},
0},
0},
0},
0},
0},
1},
1},
1},
1},
1},
1},
1},
1},
1}}; // NW

[0]
[1]
[2]
[3]
[4]
[5]
t 6]
[7]
[8]
[9]
[10]
til]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

CellDirection() {} // Constructor.

// Generate random number, look up direction tuple, and return a point
// containing the tuple.
// Inputs: None
// Return: Point
Point3f getDirection() {

93

www.manaraa.com

67:
68: int i = 0;
69: double rNum = Math.random(); // Uniform, on the interval [0.000, 1.000).
70: // Search through the list of directions and find a match for the random
71: // number drawn.
72: while (rNum > rDirection[i][rRef]) {
73: i++;
74: }
75: tPoint.x = (float)rDirectionfi][X],
76: tPoint.y = (float)rDirection[i][Y] ;
77: tPoint.z = (float)rDirectionfi][Z];
78: return tPoint;
79: }
80: }

Package Name Class Name Source Filename
Tumor04 CancerTumor CancerTumor.Java

1: //Title : CancerTumor
2: //Version....: 2.1 (09 Jan 2000)
3: //Copyright..: Copyright (c) 1999
4: //Author : Capt Bruce C Jenkins (GOA-00M)
5: //Company....: Air Force Institute of Technology
6: /»Description: This class is implemented as the container for all cancer cells
7: created in this simulation. It is intended to be the "brains" of the collection
8: of cells. It will keep track of the number of cells that exist, control when
9: and how many times a cell may divide, their rate of mitosis (death), as well as

10: other factors influencing the bahavior of the cells as a collective entity.
11:
12: This initial version of CancerTumor replaces the "cellVector" in CancerSim v2.
13: Previously, the intent was to create a CancerTumor "containing" a cellVector
14: object. After additional research, it makes better sense to simply code this
15: class so that CancerTumor, in essence, "is" the cellVector. Because of as yet
16: unforseen embellishments, this object will be designed to run in its own thread.
17: If it turns out that a separate thread is not required, this feature is easily
18: removed from the object.
19: */
20:
21: package Tumor04;
22:
23: import java.util.*;
24: import Java.awt.*;
2 5: import j avax.vecmath.*;
26: import Java.awt.Toolkit;r
27:
28: class CancerTumor extends Thread {
29:
30:
31: private int cellCount =0; // Number of cells in the cancer tumor.
32: private boolean stopTumor = false; // Flag to stop tumor growth.
33: private int popDoubles; // Number of times cell pop may divide.
34: private int cellSize; // Cell size (resolution) in pixels.
35: // changed byte ==> int 13 Feb 2000 to correct projection display errors.
36: private int growthSpace [][][];// Tumor growth space (cube).
37: private int cubeWidth, cubeHeight, cubeDepth;
38: private int xPos, yPos, zPos;
39: private CellDirection cellDirection;
40: private Point3f tPoint, tumorOrigin;
41: private Vector tumor;
42: private float cellDistance,
43: sumDistance,
44: meanDistance,
45: maxDistance = 0;
46: Date currentTime;
47: long startTime, stopTime, elapsedTime;
48:
49:

94

www.manaraa.com

50: // Construct the tumor by creating a new cancer cell at postion x, y, z.
51: // Inputs: Coordinates of new cancer cell
52: // Return: n/a
53: CancerTumor (int popDoubles,
54: int cellSize,
55: int cellWidth,
56: int cellHeight,
57: int cellDepth,
58: int FirstCellX,
59: int FirstCellY,
60: int FirstCellZ) {
61: // Set initial tumor capacity to 512; doubles when needed.
62: tumor = new Vector(512);
63: this.popDoubles = popDoubles;
64: this.cellSize = cellSize;
65: this.cubeWidth = cellWidth;
66: this.cubeHeight = cellHeight;
67: this.cubeDepth = cellDepth;
68: this.xPos = FirstCellX;
69: this.yPos = FirstCellY;
70: this.zPos = FirstCellZ;
71: }
72:
73:
74: // Initialize the growth space cube to zeros, place first cell and update
75: // all three facings.
76: // Inputs: None
77: // Return: n/a
78: private void initO {
79: this.setStop(false);
80: // Create the cube.
81: this.growthSpace = new int [cubeDepth][cubeHeight][cubeDepth];
82: // Initialize the cube.
83: for (int i = 0; i < cubeWidth; i++) {
84: for (int j =0; j < cubeHeight; j++) {
85: for (int k = 0; k < cubeDepth; k++) {
86: growthSpace[i][j][k] = 0; // Set each cell to "white."
87: }
88: }
89: }
90: // Place first cancer cell in growth space.
91: growthSpace[xPos][yPos][zPos] = 1;
92: // Update faces of the cube.
93: growthSpace[xPos][yPos][0] = 1;
94: growthSpace[xPos][0][zPos] = 1;
95: growthSpace[0][yPos][zPos] = 1;
96: // Place the first cancer cell in the tumor.
97: tumor.addElement(new CancerCell(xPos, yPos, zPos));
98: // ID the origin of the cancer tumor.
99: this.tumorOrigin = new Point3f(xPos, yPos, zPos);

100: // Instantiate the "direction finder."
101: this.cellDirection = new CellDirectionO;
102: }
103:
104: // Set the cell count to the number of cells currently in the tumor.
105: // Inputs: None
106: // Return: n/a
107: public void setCellCount() {
108: this.cellCount = tumor.size();
109: }
110:
111: // Get the number of cells currently in the tumor.
112: // Inputs: None
113: // Return: The number of cells currently in the tumor
114: public int getCellCount() {
115: return this.cellCount;
116: }
117:
118: // Set the stop flag.
119: // Inputs: Condition of flag: set (true) or not (false)
120: // Return: n/a
121: private void setStop(boolean condition) {
122: this.stopTumor = condition;
123: }

95

www.manaraa.com

124:
125: // Get the stop flag.
126: // Inputs: None
127: // Return: Condition of flag: set (true) or not (false)
128: public boolean getStopO {
129: return this.stopTumor;
130: }
131:
132: // Get a copy of the cube representing the X projection.
133: // Inputs: None
134: // Return: Projection Matrix
135: public int[][] getFaceXO {
136: int [][] face = new int[cubeWidth][cubeDepth];
137: for (int y = 0; y < this.cubeHeight,- y++) {
138: for (int z = 0; z < this.cubeDepth; z++) {
139: face[y][z] = this.growthSpace[0][y][z];
140: }
141: }
142: return face;
143: }
144:
145: // Get a copy of the cube representing the Y projection.
146: // Inputs: None
147: // Return: Projection Matrix
148: public int[][] getFaceYO {
149: int [][] face = new int[cubeHeight][cubeDepth];
150: for (int x = 0; x < this.cubeWidth; x++) {
151: for (int z = 0; z < this.cubeDepth; z++) {
152: face[x][z] = this.growthSpace[xj[0][z];
153: }
154: }
155: return face;
156: }
157:
158: // Get a copy of the cube representing the Z projection.
159: // Inputs: None
160: // Return: Projection Matrix
161: public int[][] getFaceZO {
162: int [][] face = new int[cubeWidth][cubeHeight];
163: for (int x = 0; x < this.cubeHeight; x++) {
164: for (int y = 0; y < this.cubeHeight; y++) {
165: face[x][y] = this.growthSpace[x][y][0];
166: }
167: }
168: return face;
169: }
170:
171:
172:
173: // This method will be used to execute the tumor on its own thread.
174: // Inputs: None
175: // Return: n/a
176: public void run() {
177: initO;
178: // For each population doubling, replicate all current cancer cells. New
179: // daughter cells are set off with a marker so that they are not replicated
180: // until the next doubling.
181: int firstCell = 0;
182: int lastCell = firstCell;
183: int lastDaughter = lastCell;
184: int moveX, moveY, moveZ;
185: CancerCell tCell = new CancerCell(); // Temporary cell.
186: CancerSimApp.controlPanel.jProgressBar_cellDoubles.setStringPainted(true);
187: currentTime = new Date();
188: startTime = currentTime.getTime();
189: for (int i = 1; i <= popDoubles; i++) {
190: CancerSimApp.controlPanel.j ProgressBar_popDoubles.setValue(i);
191: CancerSimApp.controlPanel.jProgressBar_popDoubles.setString("Doubling "
192: + Integer.toString(i));
193: // Cycle through the cell vector and replicate each cell.
194: CancerSimApp.controlPanel.j ProgressBar_cellDoubles.setMaximum(lastCell);
195: for (int j = firstCell; j <= lastCell; j++) {
196: if (j%100 == 0) {
197: CancerSimApp.controlPanel.jProgressBar_cellDoubles.setValue(j);

96

www.manaraa.com

198 : }
199 : // Determine direction of new cell.
200 : tPoint = cellDirection.getDirection();
201 : moveX = (int)tPoint.x;
202 : moveY = (int)tPoint.y;
203 : moveZ = (int)tPoint.z;
204 : // Access current cancer cell and retrieve coordinates.
205 : tCell = (CancerCell)tumor.elementAt(j);
206 : xPos = (int)tCell.location.x;
207 : yPos = (int)tCell.location.y;
208 : zPos = (int)tCell.location.z;
209 : // Enter the following loop if the growth space is not empty (i.e..
210 : //it's occupied by a cancer cell) at the current coordinates and the
211 : // offsets (directions of travel). Within the loop, increment the
212 : // offsets by 1 if they are positive, by -1 if negative. If the
213 : // offset is 0, no action is taken.
214 : while (growthSpace[xPos + moveX][yPos + moveY][zPos + moveZ] != 0) {
215 : if (moveX > 0) moveX++; // Continue in positive X direction.
216 : else if (moveX < 0) moveX--; // Continue in negative X direction.
217 : if (moveY > 0) moveY++; // Continue in positive Y direction.
218 : else if (moveY < 0) moveY--; // Continue in negative Y direction.
219 : if (moveZ > 0) moveZ++; // Continue in positive Z direction.
220 : else if (moveZ < 0) moveZ--; // Continue in negative Z direction.
221 : } // end while
222 : xPos += moveX; // ==> xPos = xPos + moveX
223 : yPos += moveY; // ==> yPos = yPos + moveY
224 : zPos += moveZ; // ==> zPos = zPos + moveZ
225 : // Place the cancer cell in the growth space.
226 : growthSpace[xPos][yPos][zPos] = 1; // Red cancer cell.
227 : // Update the "facings."
228 : growthSpace[xPos][yPos][0] += 1;
229 growthSpace[xPos][0][zPos] += 1;
230 growthSpace[0][yPos][zPos] += 1;
231 // Update the index to the last daughter cell and add the daughter
232 // cell to the tumor.
233 lastDaughter++;
234 tumor.addElement(new CancerCell(xPos, yPos, zPos));
235 cellCount++;
236 // Access newly placed cell and calculate distance from origin.
237 tCell = (CancerCell)tumor.elementAt(lastDaughter);
238 cellDistance = tCell.location.distance(tumorOrigin);
239 if (cellDistance > maxDistance) maxDistance = cellDistance;
240 sumDistance += cellDistance;
241: }
242: //A population doubling is complete. The added daughter cells are now
243: // part of the set of cancer cells that are candidates for the next
244: // population doubling. Update the index of cancer cells to include the
245: // new daughter cells.
246: lastCell = lastDaughter;
247: currentTime = new Date () ,-
248: stopTime = currentTime.getTime();
249: elapsedTime = stopTime - startTime;
250: System.out.println("Doubling " + i + " elapsed time: " +
251: elapsedTime/1000.000);
252: } // end for
253: CancerSimApp.controlPanel.j ProgressBar_cellDoubles.setValue(lastCell);
254: CancerSimApp.controlPanel.j ProgressBar_popDoubles.setString("Done!");
255: Toolkit.getDefaultToolkitO .beepO ;
256: CancerSimApp.controlPanel.stopButton.setEnabled(false);
257: CancerSimApp.controlPanel.startButton.setEnabled(true);
258: System.out.println("Maximum distance from tumor origin: " +
259: maxDistance + " units.");
260: System.out.printIn("Mean distance from tumor origin...: " +
261: sumDistance / cellCount + " units.");
262: this.setStop(true);
263: } // end run
264:
265: }

97

www.manaraa.com

Pack Class Name Source Filename
Tumor04 ControlPanel ControlPanel.Java

1: /*
2 : Title : ControlPanel
3: Version : 1.0 (10 Dec 1999)
4: Copyright..: Copyright (c) 1999
5: Author : Capt Bruce C Jenkins (GOA-00M)
6: Company....: Air Force Institute of Technology
7: Description: This class is designed to be the main point of control for the
8: cancer simulation. It deviates from previously developed classes in that it
9: makes use of Java Swing user interface (UI) componenets. The control panel

10: receives the simulation defaults from the main application and uses them to
11: initiate tumor growth.
12: */
13:
14: package Tumor04;
15:
16: import java.awt.*;
17: import java.awt.event.*;
18: import j avax.swing.*;
19: import j avax.swing.border.*;
20: import javax.swing.event.*;
21:
22:
23:
24: public class ControlPanel extends JFrame {
25:
26: private int popDoubles; // Number of population doublings.
27: private int cellsize; // Display cell size.
28: private int cellwidth, cellHeight, cellDepth; // Cube dimensions.
29: private int windowWidth, windowHeight; // Window dimensions.
30: private int firstCellX, firstCellY, firstCellZ; // Tumor origin.
31:
32: private CancerTumor cancerTumor;
33: private TumorWindow tumorWindow;
34:
35: // The objects below are the primary components of the control panel—the
36: // applications's graphical user interface.
37: JPanel jPanell = new JPanelO;
38: JButton startButton = new JButtonO;
39: JButton stopButton = new JButtonO;
40: JPanel jPanel2 = new JPanelO;
41: JPanel jPanel3 = new JPanelO;
42: JTextField jTextField_popDoubles = new JTextFieldO;
43: JLabel jLabell = new JLabelO;
44: TitledBorder titledBorderl;
45: TitledBorder titledBorder2;
46: TitledBorder titledBorder3;
47: JLabel jLabel2 = new JLabelO;
48: JTextField jTextField_cellResolution = new JTextFieldO;
49: JCheckBox jCheckBox_ShowTumorWindow = new JCheckBoxO;
50: BorderLayout borderLayoutl = new BorderLayout();
51: JPanel jPanel4 = new JPanelO;
52: JRadioButton jRadioButton_xAxis = new JRadioButton(),
53: JRadioButton jRadioButton_yAxis = new JRadioButton(),
54: JRadioButton jRadioButton_zAxis = new JRadioButton()
55: JPanel jPanel6 = new JPanelO;
56: JProgressBar jProgressBar_popDoubles = new JProgressBarO ;
57: JProgressBar jProgressBar_cellDoubles = new JProgressBar();
58: JPopupMenu jPopupMenul = new JPopupMenu O;
59: JLabel jLabel3 = new JLabelO;
60: JTextField jTextField_windowWidth = new JTextFieldO;
61: JTextField jTextField_windowHeight = new JTextField();
62: JLabel jLabel4 = new JLabel();
63: JLabel jLabel5 = new JLabelO;
64: GridBagLayout gridBagLayout3 = new GridBagLayout()
65: GridBagLayout gridBagLayout4 = new GridBagLayout()
66: GridBagLayout gridBagLayout5 = new GridBagLayout()

98

www.manaraa.com

67: GridBagLayout gridBagLayout2 = new GridBagLayout();
68: GridBagLayout gridBagLayoutl = new GridBagLayout();
69:
70:
71:
72:
73: // Construct the frame
74: public ControlPanel() {
75: enableEvents(AWTEvent.WINDOW_EVENT_MASK);
76: try {
77: //A visual components are in this method so that JBuilder knows where
78: // to look to build the UI. This method does not preclude the use of
79: // alternative RAD tools or the command line Java compiler.
80: jblnit();
81: }
82: catch(Exception e) {
83: e.printStackTrace();
84: }
85: }
86:
87: // Component initialization. The method jblnit is required by visual
88: // designer subsystem of Borland's JBuilder (by Inprise Corporation).
89: private void jblnit() throws Exception {
90: titledBorderl = new TitledBorder("Parameters");
91: titledBorder2 = new TitledBorder("Projection");
92: titledBorder3 = new TitledBorder("Progress");
93: setSize(new Dimension(529, 154));
94: setTitle("CancerSim");
95: setResizable(false);
9 6: this.getContentPane().setLayout(borderLayoutl);
97: j Panell.setLayout(gridBagLayout2);
98: startButton.setText("Start");
99: startButton.addActionListener(new Java.awt.event.ActionListener() {

100: public void actionPerformed(ActionEvent e) {
101: startButton_actionPerformed(e);
102: }
103:));
104: stopButton.setText("Stop");
105: stopButton.addActionListener(new Java.awt.event.ActionListener() {
106: public void actionPerformed(ActionEvent e) {
107: stopButton_actionPerformed(e);
108: }
109: });
110: j Panel2.setLayout(gridBagLayout3);
111: jPanel3.setLayout(gridBagLayout4);
112: jTextField_popDoubles.setText("") ;
113: jTextField_popDoubles.setHorizontalAlignment(SwingConstants.RIGHT);
114: jLabell.setFont(new Java.awt.Font("SansSerif", 0, 12));
115: jLabell.setHorizontalAlignment(SwingConstants.RIGHT);
116: jLabell.setText("Population Doubles:");
117: jPanel3.setBorder(titledBorderl);
118: jLabel2.setText("Cell Resolution:");
119: jLabel2.setFont(new Java.awt.Font("SansSerif", 0, 12));
120: jLabel2.setHorizontalAlignment(SwingConstants.RIGHT);
121: jTextField_cellResolution.setText("");
122: jTextField_cellResolution.setHorizontalAlignment(SwingConstants.RIGHT);
123: j CheckBox_ShowTumorWindow.s etText("Show Tumor");
124: jCheckBox_ShowTumorWindow.addActionListener(new Java.awt.event.ActionListen
125: public void actionPerformed(ActionEvent e) {
126: jCheckBox_ShowTumorWindow_actionPerformed(e);
127: }
128:));
129: j Panel4.setLayout(gridBagLayout5);
130: jPanel4.setBorder(titledBorder2);
131: jRadioButton_xAxis.setText("X");
132: jRadioButton_xAxis.setSelected(true);
133: jRadioButton_xAxis.setEnabled(false),
134: jRadioButton vAxis.setEnabled(false),
135: jRadioButton_zAxis.setEnabled(false),
136: jRadioButton_xAxis.addActionListener(new Java.awt.event.ActionListener() {
137: public void actionPerformed(ActionEvent e) {
138: jRadioButton_xAxis_actionPerformed(e);
139: }
140:));

99

www.manaraa.com

141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:

jRadioButton_yAxis.setText("YM);
jRadioButton_yAxis.addActionListener(new Java.awt.event.ActionListener()

public void actionPerformed(ActionEvent e) {
jRadioButton_yAxis_actionPerformed(e);

}
});
jRadioButton_zAxis.setText(" Z");
jRadioButton_zAxis.addActionListener(new Java.awt.event.ActionListener()

public void actionPerformed(ActionEvent e) {
jRadioButton_zAxis_actionPerformed(e);

}
});
jPanel6.setLayout(gridBagLayoutl);
jPanel6.setBorder(titledBorder3);
jLabel3.setHorizontalAlignment(SwingConstants.RIGHT);
jLabel3.setFont(new Java.awt.Font("SansSerif", 0, 12));
jLabel3.setText("Window Resolution:");
jTextField_windowWidth.setText("");
jTextField_windowWidth.setHorizontalAlignment(SwingConstants.RIGHT);
jTextField_windowHeight.setText("");
jTextField_windowHeight.setHorizontalAlignment(SwingConstants.RIGHT);
jLabel4.setHorizontalAlignment(SwingConstants.CENTER);
jLabel4.setText("X");
jLabels.setText("Y");
jLabel5.setHorizontalAlignment(SwingConstants.CENTER);
this.getContentPane().add(j Panell, BorderLayout.CENTER);
jPanell.add(jPanel3, new GridBagConstraints(1, 0, 1, 2, 1.0, 1.0

,GridBagConstraints.CENTER, GridBagConstraints.BOTH,
new Insets(0, 0, 3, 0), -11, 1));

jPanel3.add(jTextField_popDoubles,
new GridBagConstraints(3, 0, 1, 1, 1.0, 0.0
.GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
new Insets(-2, 0, 0, 3), 24, 0));

jPanel3.add(jLabell, new GridBagConstraints(0, 0, 2, 1, 0.0, 0.0
,GridBagConstraints.WEST, GridBagConstraints.NONE,
new Insets(-2, 16, 0, 0), 6, 0));

j Panel3.add(j TextField_windowHeight,
new GridBagConstraints(3, 3, 1, 1, 1.0, 0.0
.GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
new Insets(0, 0, 3, 3), 24, 0));

jPanel3.add(jLabel3, new GridBagConstraints(0, 2, 2, 1, 0.0, 0.0
,GridBagConstraints.WEST, GridBagConstraints.NONE,
new Insets(9, 6, 0, 0), 18, 0)) ;

jPanel3.add(jTextField_windowWidth,
new GridBagConstraints(1, 3, 1, 1, 1.0, 0.0
»GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
new Insets(0, 0, 3,'15), 24, 0)) ;

jPanel3.add(jTextField_cellResolution,
new GridBagConstraints(3, 1, 1, 1, 1.0, 0.0
,GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
new Insets(7, 0, 0, 3), 24, 0));

jPanel3.add(jLabel2, new GridBagConstraints(0, 1, 2, 1, 0.0, 0.0
,GridBagConstraints.WEST, GridBagConstraints.NONE,
new Insets(9, 16, 0, 0), 30, 0));

jPanel3.add(jLabel4, new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0
,GridBagConstraints.WEST, GridBagConstraints.NONE,
new Insets(0, 72, 3, 0), 7, 0));

jPanel3.add(jLabels, new GridBagConstraints(2, 3, 1, 1, 0.0, 0.0
,GridBagConstraints.WEST, GridBagConstraints.NONE,
new Insets(0, 0, 3, 0), 8, 0));

jPanell.add(jPanel4, new GridBagConstraints(2, 0, 1, 2, 1.0, 1.0
,GridBagConstraints.CENTER, GridBagConstraints.BOTH,
new Insets(0, 0, 3, 4), -9, 1));

j Panel4.add(jRadioButton_zAxis,
new GridBagConstraints(2, 1, 1, 1, 0.0, 0.0
,GridBagConstraints.CENTER, GridBagConstraints.NONE,
new Insets(16, 0, 27, 11), 0, 0)) ;

j Panel4.add(j CheckBox_ShowTumorWindow,
new GridBagConstraints(0, 0, 3, 1, 0.0, 0.0
»GridBagConstraints.CENTER, GridBagConstraints.NONE,
new Insets(4, 11, 0, 5), 5, 0));

jPanel4.add(jRadioButton_xAxis,
new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0
»GridBagConstraints.CENTER, GridBagConstraints.NONE,

100

www.manaraa.com

215: new Insets(16, 11, 27, 0), 0, 0));
216: jPanel4.add(jRadioButton_yAxis,
217: new GridBagConstraints(1, 1, 1, 1, 0.0, 0.0
218: .GridBagConstraints.CENTER, GridBagConstraints.NONE,
219: new Insets(16, 0, 27, 0), 0, 0));
220: jPanell.add(jPanel6, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0
221: .GridBagConstraints.CENTER, GridBagConstraints.BOTH,
222: newlnsets(0, 6, 0, 0), 0, 0));
223: jPanel6.add(jProgressBar_cellDoubles,
224: new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0
225: .GridBagConstraints.CENTER, GridBagConstraints.BOTH,
226: new Insets(0, 4, 0, 1), 45, 1));
227: jPanel6.add(jProgressBar_popDoubles,
228: new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0
229: ,GridBagConstraints.CENTER, GridBagConstraints.BOTH,
230: new Insets(0, 4, 1, 1), 45, 1));
231: jPanell.add(jPanel2, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0
232: .GridBagConstraints.CENTER, GridBagConstraints.BOTH,
233: new Insets(0, 0, 3, 0), 20, 5));
234: jPanel2.add(stopButton, new GridBagConstraints(1, 0, 1, 1, 0.0, 0.0
235: .GridBagConstraints.CENTER, GridBagConstraints.NONE,
236: new Insets(8, 15, 9, 34), 0, 0));
237: jPanel2.add(startButton, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0
238: »GridBagConstraints.CENTER, GridBagConstraints.NONE,
239: new Insets(8, 23, 9, 0), 0, 0));
240: j PopupMenul.addSeparator();
241: jProgressBar_popDoubles.setStringPainted(true);
242: jProgressBar_popDoubles.setMinimum(l);
243: jProgressBar_cellDoubles.setStringPainted(true);
244: jProgressBar_cellDoubles.setMinimum(l);
245: } // *** end jblinit ***
246:
247: // Overridden so we can exit on System Close.
248: protected void processWindowEvent(WindowEvent e) {
249: super.proces sWindowEvent(e);
250: if(e.getlDO == WindowEvent.WINDOW_CLOSING) {
251: System.exit(0);
252: }
253: }
254:
255: // Start execution of the control panel by placing the simulation's default
256: // values (as received from the calling main application) into the panel's
257: // text fields. Next, the stop button is turned "off" (until the the
258: // simulation is started) and a new window is created. Note that the tumor
259: // tumor window is created but not visible. Visibility is set to false at
260: // the time of window instatiation so that it's not visible until "turned on"
261: // by the user.
262: void run(int xDim, int yDim, int popDoubles, int cellSize) {
263: jTextField_popDoubles.setText(Integer.toString(popDoubles));
264: jTextField_cellResolution.setText(Integer.toString(cellSize));
265: jTextField_windowWidth.setText(Integer.toString(xDim));
266: jTextField_windowHeight.setText(Integer.toString(yDim));
267: stopButton.setEnabled(false);
268: tumorWindow = new TumorWindow(xDim, yDim);
269: // Configure progress bars.
270: jProgressBar_popDoubles.setMinimum(l);
271: jProgressBar_popDoubles.setString("Doubling: ");
272: jProgressBar_popDoubles.setStringPainted(true);
273: jProgressBar_cellDoubles.setMinimum(l);
274: jProgressBar_cellDoubles.setStringPainted(true);
275: }
276:
277: // The following methods performs the specified actions when the control
278: // panel's "start" button is pressed.
279: void startButton_actionPerformed(ActionEvent e) {
280: // In case the user changed any of the default values for the simulation,
281: // obtain the values from all text fields in the control panel.
282: this.popDoubles = Integer.parselnt(this.jTextField_popDoubles.getText0);
283: jProgressBar_popDoubles.setMaximum(popDoubles);
284: this.cellSize = Integer.parselnt(this.jTextField_cellResolution.getText());
285: this.windowWidth = Integer.parselnt(jTextField_windowWidth.getText());
286: this.windowHeight = Integer.parselnt(jTextField_windowHeight.getText());
287: tumorWindow.setSize(windowWidth, windowHeight);
288: // Reset window size to a multiple of cell size.

101

www.manaraa.com

289: int windowWidth =
290: Math.max(tumorWindow.getWidthO, cellSize) / cellSize * cellSize;
291: int windowHeight =
292: Math.max(tumorWindow.getHeight(), cellSize) / cellSize * cellSize;
293: // Calculate the number of cells possible for the x and y directions.
294: cellWidth = windowWidth / cellSize;
295: cellHeight = windowHeight / cellSize;
296: cellDepth = (cellWidth + cellHeight)12;
297: // Resize the applet window to a multiple of the scale value.
298: tumorWindow.setSize(windowWidth, windowHeight);
299: // Calculate coordinates for the cancer cell (middle of the growth space).
300: firstCellX = cellWidth / 2;
301: firstCellY = cellHeight / 2;
302: firstCellZ = cellDepth / 2;
303: // Instantiate the cancer tumor in its own thread, pass the parameters,
304: // and give the thread a name.
305: cancerTumor = new CancerTumor(popDoubles,
306: cellSize,
307: cellWidth,
308: cellHeight,
309: cellDepth,
310: firstCellX,
311: firstCellY,
312: firstCellZ);
313: startButton.setEnabledtfalse); // Simulation started; disallow new start.
314: stopButton.setEnabled(true); // Simulation started; allow to be stopped.
315: // Set range of values for tumor color based upon potential size.
316: tumorWindow.setColorChart(cellWidth);
317: // *** For output to console only ***

319: System.out.printlnf"Tumor growth started with " +
320: popDoubles + " population doublings.");
321: System.out.println("Cell resolution: " + cellSize + " (pixels)");
322: System.out.printlnt"Window resolution: " + cellWidth +
323: " x " + cellHeight + » (cells)");
324: System.out.println("First cell positioned at " +
325: firstCellX + ", " + firstCellY + ", " + firstCellZ);
326: System.out.println("===");
327: // Start the simulation.
328: cancerTumor.start();
329: }
330:
331: // The following methods performs the specified actions when the control
332: // panel's "stop" button is pressed.
333: void stopButton_actionPerformed(ActionEvent e) {
334: cancerTumor.stop(); // Suspend execution of the cancer tumor.
335: startButton.setEnabled(true);
336: stopButton.setEnabledffalse);
337: }
338:
339: // The following method performs the specified actions when the control
340: // panel's "stop" button is pressed.
341: void jCheckBox_ShowTumorWindow_actionPerformed(ActionEvent e) {
342: if (jCheckBox_ShowTumorWindow.isSelected()) {
343: if (jRadioButton_xAxis.isSelected()) {
344: jRadioButton_xAxis_actionPerformed(e);
345: }
346: else if (jRadioButton_yAxis.isSelectedO) {
347: jRadioButton_yAxis_actionPerformed(e);
348: }
349: else if (jRadioButton_zAxis.isSelected()) {
350: jRadioButton_zAxis_actionPerformed(e) ;
351: }
352: tumorWindow.setVisible(true);
353: jRadioButton_xAxis.setEnabled(true) ;
354: jRadioButton_yAxis.setEnabled(true);
355: jRadioButton_zAxis.setEnabled(true);
356: }
357: else {
358: jRadioButton_xAxis.setEnabled(false) ,
359: jRadioButton_yAxis.setEnabled(false),
360: jRadioButton_zAxis.setEnabled(false)
361: tumorWindow.setVisible(false);
362: }

102

www.manaraa.com

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

}

// The following method performs the specified actions when the control
// panel's "X Axis" radio button is pressed.
void jRadioButton_xAxis_actionPerformed(ActionEvent e) {

jRadioButton_xAxis.setSelected(true);
tumorWindow.setTitle(tumorWindow.WINDOW_TITLE + "X Axis");
jRadioButton_yAxis.setSelected(false);
jRadioButton_zAxis.setSelected(false);
tumorWindow.repaint(cancerTumor.getFaceX() ,

cellSize, cellWidth, cellHeight, cellDepth);
}

// The following method performs the specified actions when the control
// panel's "Y Axis" radio button is pressed.
void jRadioButton_yAxis_actionPerformed(ActionEvent e) {

jRadioButton_xAxis.setSelected(false);
jRadioButton_yAxis.setSelected(true);
tumorWindow.setTitle(tumorWindow.WINDOW_TITLE + "Y Axis");
tumorWindow.panel.repaint();
jRadioButton_zAxis.setSelected(false);
tumorWindow.repaint(cancerTumor.getFaceY(),

cellSize, cellWidth, cellHeight, cellDepth);
}

// The following method performs the specified actions when the control
// panel's "Z Axis" radio button is pressed.
void jRadioButton_zAxis_actionPerformed(ActionEvent e) {

jRadioButton_xAxis.setSelected(false);
jRadioButton_yAxis.setSelected(false);
jRadioButton_zAxis.setSelected(true);
tumorWindow.setTitle(tumorWindow.WINDOW_TITLE + "Z Axis");
tumorWindow.repaint(cancerTumor.getFaceZ(),

cellSize, cellWidth, cellHeight, cellDepth);
}

Package Name Class Name Source Filename

Tumor04 TumorWindow TumorWindow.java

1: /*
2 : Title : TumorWindow
3: Version....: 1.1
4: Copyright..: Copyright (c) 1999
5: Author : Capt Bruce C Jenkins (GOA-00M)
6: Company....: Air Force Institute of Technology
7: Description: This class is designed to be the main point of control for the
8: cancer simulation. It deviates from previously developed classes in that it
9: makes use of Java Swing user interface (UI) componenets. The control panel

10: receives the simulation defaults from the main application and uses them to
11: initiate tumor growth.
12:
13: Modification history:
14:
15: Version 1.0 (10 Dec 1999)
16: - Receive a projection (matrix) from the calling method. Determine the range of
17: values for the display color and paint the screen.
18:
19: Version 1.1 (27 Jan 2000)
20: - The initial version could not display small tumors. The range of values
21: chosen was based on the range "possible," which was derived from the size of
22: the cube.
23: - This version is modified to adjust the color scale based upon the actual tumor
24: size.
25: */
26:
27: package Tumor04;

103

www.manaraa.com

28:
29: import java.awt.*;
30: import javax.swing.*;
31:
32: class TumorWindow extends JFrame {
33:
34: private Color colorChart[]; // Holds range of color values.
35: final String WINDOW_TITLE = "Tumor Projection: ";
36: JPanel panel;
37: private static int cellSize; // Pixel resolution of cancer cell.
38: private static int cellWidth; // Width, in cells, of growth space.
39: private static int cellHeight; // Height, in cells, of growth space.
40: private static int cellDepth; // Depth, in cells, of growth space.
41: int[][] face; // Projection facing.
42:
43: // Create the window in which a growing tumor will be shown.
44: // Inputs: The default window size
45: // Return: n/a
46: public TumorWindow(int width, int height) {
47: panel = new JPanel(); // Create a new panel instance.
48: this.setSize(width, height); // Set the default window size.
49: this.setResizable(false); // Don't allow resizing.
50: }
51:
52: // Create a table of Java Color objects by determining the range of colors to
53: // use, and then assigning a color value to each possible value in the range.
54: // Inputs: Tumor density + 1.
55: // Return: n/a
56: public void setColorChart(int density) {
57: int cScale = (256/density); // Valid color range is 0-255.
58: colorChart = new Color[density]; // Create array of length = density.
59: // Fill color chart with color values that are multiples of scale. The net
60: // effect is the use of the full range of the color scale for max contrast.
61: // We are using shades of white to represent the tumor density, so there is
62: // no need to differentiate between the red, blue, and green arguments
63: // passed to the ColorO constructor. Instead, we will use a single,
64: // identical value for all arguments.
65: int c = 0; // Initial rgb value. Color(0,0,0) ==> black.
66: // Construct the color chart. No cells in the projection will show as
67: // black. Max cells in the projection will show as white. The number of
68: // cells between 0 and Max will be displayed as shades of gray from black
69: // to white by steps of cScale.
70: // For example:
71: // density = 8 (0-7 cancer cells)
72: // cScale = 256/8 = 32
73: // colorChart = {{0,0,0},{32,32,32},{64,64,64},{96,96,96},{128,128,128),
74: // {160,160,160},{192,192,192},{224,224,224}}
75: for (int i = 0; i < density; i++) {
76: colorChart[i] = new Color(c, c, c);
77: c += cScale;
78: }
79: }
80:
81: // Paint the projection within the window.
82: // Inputs: Cell resolution and growth space dimensions.
83: // Return: n/a
84: public void repaint(int[][] face, int cellSize,
85: int cellWidth,
86: int cellHeight,
87: int cellDepth) {
88: this.face = face;
89: this.cellSize = cellSize;
90: this.cellWidth = cellWidth;
91: this.cellHeight = cellHeight;
92: this.cellDepth = cellDepth;
93: // Determine new ColorChart values.
94: int maxDensity = 0;
95: for (int i = 0; i < cellHeight; i++) {
96: for (int j = 0; j < cellWidth; j++) {
97: if (this.face[i][j] > maxDensity) {
98: maxDensity = this.face[i][j];
99: }

100: }
101: }

104

www.manaraa.com

102: setColorChart(maxDensity +1); // Add 1 to account for a density of 0.
103: this.repaint();
104: }
105:
106: // Call this method to reduce screen flickering.
107: public void update(Graphics g) {
108: paint(g);
109: }
110:
111:
112: // Repaint the screen based upon values in the projection matrix ("face").
113: public void paint(Graphics g) {
114: int cellValue;
115: for (int j = 0; j < cellHeight; j++) {
116: for (int k = 0; k < cellDepth; k++) {
117: cellValue = face[j][k]; // Get value of cube face.
118: g.setColor(colorChart[cellValue]);
119: g.fillRect(j * cellSize, k * cellSize, cellSize, cellSize);
120: }
121: }
122: }
123:
124: private void jblnitf) throws Exception {
125: this.setVisible(false); // Make visible when the user wants to see it.
126: }
127: }

105

www.manaraa.com

Appendix B: Java Source Code - Tumor04_2

Package Name Class Name ; Source Filename
Tumor04_2 CancerSimApp CancerSimApp.java

1: /*
2 : Title : CancerSim
3: Copyright..: Copyright (c) 1999
4: Author : Capt Bruce C Jenkins (GOA-00M)
5: Company....: Air Force Institute of Technology
6: Description: CancerSim simulates the growth of a 3-dimensional breast cancer
7: tumor. This model utilizes a static 1 x m x n cube for the tumor growth space.
8: The dimensions of the growth space depend on the pixel dimensions chosen for the
9: applet and the scale (size) of the cancer cell in pixels. After initialization,

10: a single cancer cell is positioned approximately in the center of the cube. The
11: cell's position is tracked with a dynamic, object-oriented container (Vector)
12: that is created at runtime. The number of times the container is examined
13: represents the number of population doublings that occur. For each cancer cell
14: found in the vector ("cellVector"), a new cancer cell is placed in an unoccupied
15: position in the cube ("growthSpace"). The direction in which a search for a
16: free space is conducted (there are 26 possible directions) is determined by a
17: uniform random number, which is generated each time a cell must be positioned.
18: (See the written thesis for additional documentation.) The simulation ends when
19: the number of population doublings is complete or the tumor growth has exceeded
20: the bounds of the growthSpace.
21:
22: Modification history:
23:
24: Version 4.0 (16 Dec 1999):
25: 1 In the previous version, cellWidth x cellWidth color objects were created
26: each time the tumor was painted to the screen. There was a significant amount
27: of memory and time overhead associated with this method. In this version of
28: CancerSim, the number of color objects required is reduced by
29: cellWidth*cellWidth. After the number of cells (of the face of the cube) are
30: determined, a color chart is created that contains the range of color shades
31: scaled to the maximum possible number of cells along any of the three axis.
32:
33: 2. The above code was moved to a new class: ControlPanel. This modification is
34: part of a complete restructuring of the program to take advantage of the Java
35: Swing componenets.
36:
37: 3. The applet was converted to an application for the same reason identified
3 8: above.
39:
40: Version 4.1:
41: The CancerTumor class was modified to remove the use of the 3-D growth space to
42: determine whether or not a candidate cell position was unoccupied. Instead of
43: doing a query on the cube, the cell vector is repeatedly traversed.
44:
45: Version 4.2 (18 Jan 2000):
46: Because of exponential growth in the time required for population doublings in
47: version 4.2, the growth space cube was returned to the CancerTumor class. In
48: this version, all references to "population doublings" were changed to "elapsed
49: time."
50: */
51:
52: package Tumor04_2;
53:
5 4: import j ava.awt.*;
5 5: import j avax.swing.UIManager;
56:
57: public class CancerSimApp {
58:
59: static final String VERSION = "4.2";
60:
61: //*************************** simulation Defaults ***************************
62: private final int DEFAULT_X_DIM =400; // Width and height of of tumor

106

www.manaraa.com

63: private final int DEFAULT_Y_DIM = 400; // display window.
64: private final int DEFAULTJTIME = 400; // Elapsed time (units).
65: private final int DEFAULT_SCALE =6; // Display cell size.
gg. //a**

67:
68: static ControlPanel controlPanel; // Simulation control component.
69: boolean packFrame = false; // Default packing of frames.
70:
71: // Construct the application.
72: // Inputs: None
73: // Return: n/a
74: public CancerSimApp() {
75: Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSizeO;
76: controlPanel = new ControlPanel(); // Create a new control panel object.
77: // Pack frames that have useful preferred size info. For example, from
78: // their layout.
79: if (packFrame) {
80: controlPanel.pack();
81: }
82: else {
83: controlPanel.validate(); // Validate frames that have preset sizes.
84: }
85: // Center control panel horizontally and just below the center of the
86: // vertically screen.
87: controlPanel.setLocation((screenSize.width - controlPanel.getWidthf))12,
88: screenSize.height/2);
89: controlPanel.setVisible(true);
90: // Start control panel with defaults.
91: controlPanel.run(DEFAULT_X_DIM, DEFAULT_Y_DIM,
92: DEFAULT_TIME, DEFAULT_SCALE);
93: }
94:
95: // Main method. Establish the application's look and feel and instantiate
96: // the application. For consistency from platform to platform, the look
97: // and feel is set to "Metal."
98: // Inputs: None
99: // Return: n/a

100: public static void main(String[] args) {
101: try {
102: UIManager.setLookAndFeel("javax.swing.plaf.motif.MetalLookAndFeel");
103: }
104: catch(Exception e) {
105: }
106: CancersimApp cancerSim = new CancerSimApp();
107: }
108: }

107

www.manaraa.com

Package Name Class Name Source Filename
Tumor04_2 CancerCell CancerCell.Java

1: /*
2 : Title : CancerCell
3: Version....: 3.2
4: Copyright..: Copyright (c) 1999
5: Author : Capt Bruce C Jenkins (GOA-00M)
6: Company....: Air Force Institute of Technology
7: Description: CancerCell is a key components of this simulation. It is
8: intended that this class have the capability to scale with the increased
9: complexity inherent in improving the CancerSim application.

10:
11: Modification history:
12: Version 2.0 (10 Nov 1999):
13: The type declaration for "location" has been replace by a 3-dimensional
14: version. This improves the scaleability of the object as the simulation moves
15: to a 3-D environment for growing the cancer cells.
16:
17: Version 3.0 (??):
18:
19: Version 3.1 (07 Dec 1999):
20: The Point class was replaced with Point3f from Java3D. This was done to
21: allow complex vector calculations between two points in 3D space.
22:
23: Version 3.2 (17 Jan 2000):
24: Add the capability to track the age of the cancer cell, the current phase of
25: cell development, and how long it is in that phase.
26:
27: */
28: package Tumor04_2;
29:
3 0: import j avax.vecmath.*;
31: import Java.util.Random;
32: import drasys.or.prob.NormalDistribution;
33:
34: public class CancerCell {
35:
36: private int celllD = 1; // Give each new cell a unique ID.
37: private Point3f location; // The xyz coordinates of the cancer cell.
38: private boolean isAlive; // Indicates if cell is alive or dead.
39: private int age; // Age of cancer cell.
40: private int timelnPhase; // Time to spend in current growth phase.
41: private int maxTimelnPhase[] = {10, 0, 0, 0, 0};
42: private byte growthPhase; // The phase of cancer cell growth.
43:
44:
45:
46:
47:
48: private NormalDistribution timeDist;
49:
50:
51: // Create the constuctor so that coordinates are required at instantiation.
52: // Inputs: Coordinates for new cancer cell
53: // Return: n/a
54: CancerCell(float xPos, float yPos, float zPos) {
55: location = new Point3f(xPos, yPos, zPos);
56: isAlive = true;
57: age = 0;
58: growthPhase = 1;
59: timelnPhase = 0;
60: timeDist = new NormalDistribution(12, 0.75);
61: maxTimelnPhase[1] = (int)Math.round(timeDist.getRandomScaler());
62: }
63:
64: // Create constuctor so that no coordinates are required at instantiation.
65: // Inputs: None
66: // Return: n/a

// 0 ==> Quiesence (GO) .
// 1 ==> Gap 1 (Gl) .
// 2 ==> Synthesis (S).
// 3 ==> Gap 2 (G2).
// 4 ==> Mytosis (M) .

108

www.manaraa.com

67: CancerCell() {
68: }
69:
70: // Set the current location of the cancer cell.
71: // Inputs: Coordinates for new cancer cell
72: // Return: n/a
73: public void setLocation(float xPos, float yPos, float zPos) {
74: location.set(xPos, yPos, zPos);
75: }
76:
77: // Get the current location of the cancer cell.
78: // Inputs: None
79: // Return: Location of cancer cell
80: public Point3f getLocation() {
81: return location;
82: }
83:
84: // Set the dead/alive condition of the cancer cell. If the cell is alive,
85: // the ability to divide is assumed.
86: // Inputs: Boolean value indicating if cell is alive or dead
87: // Return: n/a
88: public void setlsAlive(boolean condition) {
89: isAlive = condition;
90: }
91:
92: // Get the dead/alive condition of the cancer cell.
93: // Inputs: None
94: // Return: Boolean value indicating if cell is alive or dead
95: public boolean getIsAlive(){
96: return isAlive;
97: }
98:
99: // Set the age of the cancer cell.

100: // Inputs: Current age of the cancer cell.
101: // Return: n/a.
102: public void setAge(int theAge){
103: age = theAge;
104: }
105:
106: // Get the age of the cancer cell.
107: // Inputs: None
108: // Return: Integer value representing the age of the cancer cell.
109: public int getAge(){
110: return age;
111: }
112:
113: // Increment the time in current phase by one time unit.
114: // Inputs: None
115: // Return: n/a.
116: public void setTimelnPhase(int theTime){
117: timelnPhase = theTime;
118: }
119:
120: // Get the number of time unit spent in the current phase.
121: // Inputs: None
122: // Return: Integer value representing the time spent in the current phase.
123: public int getTimelnPhase(){
124: return timelnPhase;
125: }
126:
127: // Set the growth phase of the cancer cell. If the cancer cell is new, then
128: // set the phase to Gap 1.
129: // Inputs: None.
130: // Return: n/a.
131: public void setGrowthPhase(byte thePhase){
132: growthPhase = thePhase;
133: timelnPhase = 0;
134: }
135:
136: // Get the growth phase of the cancer cell.
137: // Inputs: None.
138: // Return: Integer value representing the growth phase of the cancer cell.
139: public int getGrowthPhase(){
140: return growthPhase;

109

www.manaraa.com

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

}

// Set the maximum time allowed for a given phase.
// Inputs: The phase and maximum time allowed.
// Return: n/a.
public void setMaxTimelnPhasefint phase, int maxTime) {

this.maxTimelnPhase[phase] = maxTime;
}

// Get the maximum time allowed for a given phase.
// Inputs: None.
// Return: Integer value representing the max time allowed in current phase.
public int getMaxTimeInPhase(int phase) {

return this.maxTimelnPhase[phase];
}

// Give the cancer cell a unique ID.
// Inputs: Cell ID.
// Return: n/a.
public void setCelllD (int newID) {

this.celllD = newID;
}

// Get the unique cancer cell ID.
// Inputs: None.
// Return: Integer value representing a unique cell ID.
public int getCelllD () {

return this.celllD;
)

// Start the process of cell division. While in the state of dividing, a new
// cancer cell is created. A direction of travel is determined by the tumor.
// Inputs: None
// Return: New cancer cell with coordinates of the current cell.
public CancerCell divide() {

// Put self back into phase Gl.
this.growthPhase = 1;
timeDist = new NormalDistribution(12, 0.75);
this.maxTimelnPhase[1] = (int)Math.round(timeDist.getRandomScaler());
this.timeInPhase = 0;
// Get current position and pass to new cell.
float x = this.location.x;
float y = this.location.y;
float z = this.location.z;
return new CancerCell(x, y, z);

}

Package Name
Tumor04 2

Class Name
CellDirection

Source Filename
CellDirection.java

{ See Appendix A, CellDirection.Java }

Package Name
Tumor04 2

Class Name
CancerTumor

Source Filename
CancerTumor.j ava

1: /*
2 : Title : CancerTumor
3: Version....: 4.0
4: Copyright..: Copyright (c) 1999
5: Author : Capt Bruce C Jenkins (GOA-00M)

110

www.manaraa.com

6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:

Company....: Air Force Institute of Technology
Description: This class is implemented as the container for all cancer cells
created in this simulation. It is intended to be the "brains" of the collection
of cells. It will keep track of the number of cells that exist, control when
and how many times a cell may divide, their rate of mitosis (death), as well as
other factors influencing the bahavior of the cells as a collective entity.

Modification history:
Version 1.0 (10 Nov 1999):
This initial version of CancerTumor replaces the "cellVector" in CancerSim v2.
Previously, the intent was to create a CancerTumor "containing" a cellVector
object. After additional research, it makes better sense to simply code this
class so that CancerTumor, in essence, "is" the cellVector. Because of as yet
unforseen embellishments, this object will be designed to run in its own thread.
If it turns out that a separate thread is not required, this feature is easily
removed from the object.

Version 2.0 (Dec 1999):
The CancerTumor was changed to a "has-a" relationship with the CellVector class.
It turns out that this was a more flexible option than what was previously
implemented.

Version 3.0 (09 Jan 2000)
This version removed the growthSpace cube and checked for candidate cell space
directly in cellVector. The removal of the cube significantly increased the
execution time of the simulation.

Version 4.0 (17 Jan 2000):
This version reverts back to the 2.0 model, which uses the growthSpace cube to
check for free space. In addition, the following enhancements were made:
- Implement use of the stopTumor flag through the public method setStop().
A flag check was added at the point of updating the cellDoubles progress bar.
If the flage is set, the program breaks out of the tumor growth loops, prints
final values for tumor growth distances and terminates.

- Converted growthSpace to a cube of integers. Since we're summing to the face
of the cube, the maximum value allowed by a byte would mean a maximum of 23
population doublings.

*/
package Tumor04_2 ;

import java.util.*;
import j ava.awt.*;
import javax.vecmath.*;
import Java.awt.Toolkit;
import Tumor04_2.CellRules.*;

class CancerTumor extends Thread {

private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private

int cellCount =0; // Number of cells in the cancer tumor,
int cellsAlive = 0; // Cells living cells at end of simulation,
boolean stopTumor = false; // Flag to stop tumor growth.

// Number of times cell pop may divide.
// Cell size (resolution) in pixels.
// Tumor growth space (cube).
// Width, in cells, of the growth space.

[] [] [],

int simTime;
int cellSize;
int growthSpace
int cubeWidth;
int cubeHeight;
int cubeDepth;
int xPos ;
int yPos ;
int zPos;
CellDirection cellDirection;
CellRules CellRules;
Point3f tPoint;
Point3f tumorOrigin;
Vector tumor;
float cellDistance = 0
float sumDistance = 0;
float meanDistance = 0
float maxDistance = 0;
Date currentTime;
long startTime;
1ong s topTime;

//
//
//
//
//

//
//
//
//
//
//

//

Height, in cells, of the growth space.
Depth, in cells, of the growth space.
X-axis position of cell in growthSpace.
Y-axis position of cell in growthSpace.
Z-axis position of cell in growthSpace.

Temporary point.
Track origin of cancer tumor.
Container to manage cancer cells.
The next four attributes are used to
keep track of distance metrics within
the tumor.

The next four attributes are used to
// keep track of time metrics for the
// growth of cancer cells with the tumor.

Ill

www.manaraa.com

80: private long elapsedTime;
81: private DataManagement timeData = new DataManagement();
82: private Collection timeList = new ArrayList(); // List of time stamps.
83:
84:
85: // Construct the tumor by creating a new cancer cell at postion x, y, z.
86: // Inputs: Coordinates of new cancer cell
87: // Return: n/a
88: CancerTumor (int simTime,
89: int cellSize,
90: int cellWidth,
91: int cellHeight,
92: int cellDepth,
93: int FirstCellX,
94: int FirstCellY,
95: int FirstCellZ) {
96: // Set initial tumor capacity to 512; doubles when needed.
97: tumor = new Vector(512);
98: this.simTime = simTime;
99: this.cellSize = cellSize;

100: this.cubeWidth = cellWidth;
101: this.cubeHeight = cellHeight;
102: this.cubeDepth = cellDepth;
103: this.xPos = FirstCellX;
104: this.yPos = FirstCellY;
105: this.zPos = FirstCellZ;
106: }
107:
108: // Initialize the growth space cube to zeros, place first cell and update
109: // all three facings.
110: // Inputs: None
111: // Return: n/a
112: private void init() {
113: this.setStop(false);
114: // Create the cube.
115: this.growthSpace = new int [cubeWidth][cubeHeight][cubeDepth];
116: // Initialize the cube.
117: for (int i = 0; i < cubeWidth; i++) {
118: for (int j = 0; j < cubeHeight; j++) {
119: for (int k = 0; k < cubeDepth; k++) {
120: growthSpace[i][j][k] = 0; // Set each cell to "white."
121: }
122: }
123: }
124: // Place first cancer cell in growth space.
125: growthSpace[xPos][yPos][zPos] = 1;
126: // Update faces of the cube.
127: growthSpace[xPos][yPos][0] = 1;
128: growthSpacefxPos][0][zPos] = 1;
129: growthSpace[0][yPos][zPos] = 1;
130: // Place the first cancer cell in the tumor.
131: tumor.addElement(new CancerCell(xPos, yPos, zPos));
132: cellCount++;
133: cellsAlive++;
134: // ID the origin of the cancer tumor.
135: this.tumorOrigin = new Point3f(xPos, yPos, zPos);
136: // Instantiate the "direction finder."
137: this.cellDirection = new CellDirectionO ;
138: }
139:
140:
141:
142: // Set the cell count to the number of cells currently in the tumor.
143: // Inputs: None
144: // Return: n/a
145: public void setCellCount() {
146: this.eelICount = tumor.size();
147: }
148:
149: // Get the number of cells currently in the tumor.
150: // Inputs: None
151: // Return: The number of cells currently in the tumor
152: public int getCellCount() {
153: return this.cellCount;

112

www.manaraa.com

154: }
155:
156: // Set the stop flag.
157: // Inputs: Condition of flag: set (true) or not (false)
158: // Return: n/a
159: public void setStop(boolean condition) {
160: this.stopTumor = condition;
161: }
162:
163: // Get the stop flag.
164: // Inputs: None
165: // Return: Condition of flag: set (true) or not (false)
166: public boolean getStopO {
167: return this.stopTumor;
168: }
169:
170: // Get a copy of the cube representing the X projection.
171: // Inputs: None
172: // Return: Projection Matrix
173: public int[][] getFaceXO {
174: int [][] face = new int[cubeWidth][cubeDepth];
175: for (int y = 0; y < this.cubeHeight; y++) {
176: for (int z = 0; z < this.cubeDepth; z++) {
177: face[y][z] = this.growthSpace[0][y][z];
178: }
179: }
180: return face;
181: }
182:
183: // Get a copy of the cube representing the Y projection.
184: // Inputs: None
185: // Return: Projection Matrix
186: public int[][] getFaceYO {
187: int [][] face = new int[cubeHeight][cubeDepth];
188: for (int x = 0; x < this.cubeWidth; x++) {
189: for (int z = 0; z < this.cubeDepth; z++) {
190: face[x][z] = this.growthSpace[x][0][z];
191: }
192: }
193: return face;
194: }
195:
196: // Get a copy of the cube representing the Z projection.
197: // Inputs: None
198: // Return: Projection Matrix
199: public int[][] getFaceZO {
200: int [][] face = new int[cubeWidth][cubeHeight];
201: for (int x = 0; x < this.cubeHeight; x++) {
202: for (int y = 0; y < this.cubeHeight; y++) {
203: facefx][y] = this.growthSpace[x][y][0];
204: }
205: }
206: return face;
207: }
208:
209: // This method will be used to execute the tumor on its own thread.
210: // Inputs: None
211: // Return: n/a
212: public void run() {
213: initO;
214: // For each population doubling, replicate all current cancer cells. New
215: // daughter cells are set off with a marker so that they are not replicated
216: // until the next doubling.
217: int firstCell = 0;
218: int lastCell = firstCell;
219: int lastDaughter = lastCell;
220: int moveX, moveY, moveZ;
221: CancerCell currentCell, newCell; // Temporary cells.
222: CancerSimApp.controlPanel.jProgressBar_cellDoubles.setStringPainted(true);
223: currentTime = new Date();
224: startTime = currentTime.getTime();
225: for (int i = 1; i <= simTime; i++) {
226: CancerSimApp.controlPanel.jProgressBar_simTime.setValue(i);
227 : CancerSimApp.controlPanel.jProgressBar_simTime.setString("Period: "

113

www.manaraa.com

228: + Integer.toString(i));
229: // Cycle through the cell vector and test each cell for replication.
230: CancerSimApp.controlPanel.jProgressBar_cellDoubles.setMaximum(lastCell);
231: for (int j = firstCell; j <= lastCell; j++) {
232: if (j%100 == 0) {
233: if (stopTumor) break;
234: CancerSimApp.controlPanel.j ProgressBar_cellDoubles.setValue(j);
235: }
236: // Access current cancer cell and determine if its current growth
237: // phase allows it to divide.
238: currentCell = (CancerCell)tumor.elementAt(j);
239: if (cellRules.canDivide(currentCell)) {
240: // Determine direction of travel for new cell.
241: tPoint = cellDirection.getDirection();
242: moveX = (int)tPoint.x;
243: moveY = (int)tPoint.y;
244: moveZ = (int)tPoint.z;
245: // Cause current cell to create a new cell.
246: newCell = (CancerCell)currentCell.divide();
247: // New cell's location coincides with current cell. Get the
248: // location so direction of travel can be used to determine the
249: // destination.
250: tPoint = newCell.getLocation();
251: xPos = (int)tPoint.x;
252: yPos = (int)tPoint.y;
253: zPos = (int)tPoint.z;
254: // Enter the following loop if the growth space is not empty (i.e.,
255: // it's occupied by a cancer cell) at the current coordinates and t
256: // offsets (directions of travel). Within the loop, increment the
257: // offsets by 1 if they are positive, by -1 if negative. If the
258: // offset is 0, no action is taken.
259: while (growthSpace[xPos + moveX][yPos + moveY][zPos + moveZ] != 0)
260: if (moveX > 0) moveX++; // Continue in positive X direction.
261: else if (moveX < 0) moveX—; // Continue in negative X direction
262: if (moveY > 0) moveY++; // Continue in positive Y direction.
263: else if (moveY < 0) moveY—; // Continue in negative Y direction
264: if (moveZ > 0) moveZ++; // Continue in positive Z direction.
265: else if (moveZ < 0) moveZ--; // Continue in negative Z direction
266: } // end while
267: xPos += moveX; // ==> xPos = xPos + moveX
268: yPos += moveY; // ==> yPos = yPos + moveY
269: zPos += moveZ; // ==> zPos = zPos + moveZ
270: // Place the cancer cell in the growth space.
271: growthSpacetxPos][yPos][zPos] = 1; // Red cancer cell.
272: // Update the "facings."
273: growthSpacetxPos][yPos][0] += 1;
274: growthSpacetxPos][0][zPos] += 1;
275: growthSpacetO][yPos][zPos] += 1;
276: // Update the index to the last daughter cell and add the daughter
277: // cell to the tumor.
278: lastDaughter++;
279: newCell.setLocation(xPos, yPos, zPos);
280: newCell.setCellID(++cellCount);
281: tumor.addElement(newCell);
282: // Use new position of cell to calculate distance from origin.
283: tPoint.x = xPos;
284: tPoint.y = yPos;
285: tPoint.z = zPos;
286: cellDistance = tPoint.distance(tumorOrigin);
287: if (cellDistance > maxDistance) maxDistance = cellDistance;
288: sumDistance += cellDistance;
289: } // end if
290: if (!currentCell.getlsAliveO) {
291: cellsAlive—;
292: if (cellsAlive == 0) break;
293: }
294: } // end for
295: if ((stopTumor) || (cellsAlive == 0)) break;
296: // A population doubling is complete. The added daughter cells are now
297: // part of the set of cancer cells that are candidates for the next
298: // population doubling. Update the index of cancer cells to include the
299: // new daughter cells.
300: lastCell = lastDaughter;
301: currentTime = new Dated;

114

www.manaraa.com

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

stopTime = currentTime.getTime();
// elapsedTime = stopTime - startTime;
timeList.add(new Long(stopTime - startTime));

} // end for
if (istopTumor) {

CancerSimApp.controlPanel.j ProgressBar_cellDoubles.setValue(lastCell)
CancerSimApp.controlPanel.j ProgressBar_simTime.setString("Done! ") ;
timeData.printToFile(timeList);

}
else System.out.println("*** Tumor growth interrupted!");
Toolkit.getDefaultToolkit().beep();
CancerSimApp.controlPanel.stopButton.setEnabled(false);
CancerSimApp.controlPanel.startButton.setEnabled(true);
System.out.println("Maximum distance from tumor origin: " +

maxDistance + " units.");
System.out.println("Mean distance from tumor origin...: " +

sumDistance / cellCount + " units.");
System, out. printlnfCell count: " + tumor.sizeO) ;
// end run

Package Name Class Name Source Filename
Tumor04_2 ControlPanel ControlPanel.Java

1: /*
2 : Title : ControlPanel
3: Version....: 1.1
4: Copyright..: Copyright (c) 1999, 2000
5: Author : Capt Bruce C Jenkins (GOA-00M)
6: Company....: Air Force Institute of Technology
7: Description: This class is designed to be the main point of control for the
8: cancer simulation. It deviates from previously developed classes in that it
9: makes use of Java Swing user interface (UI) componenets. The control panel

10: receives the simulation defaults from the main application and uses them to
11: initiate tumor growth.
12:
13: Modification history:
14:
15: Version 1.0 (10 Dec 1999):
16: - The initial verion provide basic funtionality. The user could start and stop
17: the tumor growth, adjust the simulation parameters (population doublings, cell
18: resolution, and window size), display the projection and choose the axis of
19: the projection.
20:
21: Version 1.1:
22: - When the stop button is pressed, instead of using the stopf) method to halt
23: the thread (a method that is deprecated), CancerTumor.stopTumor() is called.
24: - All references to "population doublings" were changed to (simulation) "time."
25: */
26:
27: package Tumor04_2;
28:
2 9: import j ava.awt.*;
30: import java.awt.event.*;
31: import javax.swing.*;
32: import javax.swing.border.*;
3 3: import j avax.swing.event.*;
34: import com.borland.jbcl.layout.*;
35:
36: public class ControlPanel extends JFrame {
37:
38: private int simTime; // Number of time units to run simulation.
39: private int cellSize; // Display cell size.
40: private int cellWidth, cellHeight, cellDepth; // Cube dimensions.
41: private int windowWidth, windowHeight; // Window dimensions.
42: private int firstCellX, firstCellY, firstCellZ; // Tumor origin.
43:

115

www.manaraa.com

44: private CancerTumor cancerTumor;
45: private TumorWindow tumorWindow;
46:
47: // The objects below are the primary components of the control panel--the
48: // applications's graphical user interface.
49: JPanel jPanell = new JPanelO;
50: JButton startButton = new JButtonO;
51: JButton stopButton = new JButtonO;
52: JPanel jPanel2 = new JPanelO;
53: JPanel jPanel3 = new JPanelO;
54: JTextField jTextField_simTime = new JTextField0;
55: JLabel jLabell = new JLabel();
56: TitledBorder titledBorderl;
57: TitledBorder titledBorder2;
58: TitledBorder titledBorder3;
59: JLabel jLabel2 = new JLabel (),-
60: JTextField jTextField_cellResolution = new JTextField();
61: JCheckBox jCheckBox_ShowTumorWindow = new JCheckBox();
62: BorderLayout borderLayoutl = new BorderLayout();
63: JPanel jPanel4 = new JPanelO;
64: JRadioButton jRadioButton_xAxis = new JRadioButton();
65: JRadioButton jRadioButton_yAxis = new JRadioButton0;
66: JRadioButton jRadioButton_zAxis = new JRadioButton();
67: JPanel jPanel6 = new JPanelO;
68: JProgressBar jProgressBar_simTime = new JProgressBar();
69: JProgressBar jProgressBar_cellDoubles = new JProgressBar0;
70: JPopupMenu jPopupMenul = new JPopupMenu();
71: JLabel jLabel3 = new JLabel();
72: JTextField jTextField_windowWidth = new JTextField();
73: JTextField jTextField_windowHeight = new JTextField();
74: JLabel jLabel4 = new JLabel();
75: JLabel jLabel5 = new JLabel();
76: GridBagLayout gridBagLayout3 = new GridBagLayout0;
77: GridBagLayout gridBagLayoutl = new GridBagLayout0;
78: GridBagLayout gridBagLayout4 = new GridBagLayout0;
79: GridBagLayout gridBagLayout5 = new GridBagLayout();
80: GridBagLayout gridBagLayout2 = new GridBagLayout();
81:
82: // Construct the frame
83: public ControlPanel() {
84: enableEvents(AWTEvent.WINDOW_EVENT_MASK);
85: try {
86: jblnit();
87: }
88: catch(Exception e) {
89: e.printStackTrace();
90: }
91: }
92:
93: // Component initialization. The method jblnit is required by visual
94: // designer subsystem of Borland's JBuilder (by Inprise Corporation).
95: private void jblnit0 throws Exception {
96: /* This section would not work properly when deployed to a jar file. (It
97: works prior to deployment.) The intent was to replace the Java icon
98: located in the upper left corner of the control panel with the AFIT logo.
99: // Add the AFIT shield to the application pane. Note that the file in the

100: // "getResource(<file>)" method must be in the class directory and also
101: // must be deployed to the jar or zip file.
102: Imagelcon icon = new ImageIcon(getClass().getResource("Tumor04_2/AFIT.jpg")
103: this.setlconlmage(icon.getlmage());
104: */
105: titledBorderl = new TitledBorder("Parameters");
106: titledBorder2 = new TitledBorder("Projection") ;
107: titledBorder3 = new TitledBorder("Progress");
108: setSize(new Dimension(529, 154));
109: setTitle("CancerSim");
110: setResizable(false);
111: this.getContentPane().setLayout(borderLayoutl);
112: j Panell.setLayout(gridBagLayout5);
113: startButton.setText("Start");
114: startButton.addActionListener(new java.awt.event.ActionListener0 {
115: public void actionPerformed(ActionEvent e) {
116: startButton_actionPerformed(e);
117: }

116

www.manaraa.com

118: }) ;
119 : stopButton.setText("Stop");
120: stopButton.addActionListener(new Java.awt.event.ActionListener() {
121: public void actionPerformed(ActionEvent e) {
122: stopButton_actionPerformed(e);
123: }
124: });
125: jPanel2.setLayout(gridBagLayout3);
126: jPanel3.setLayout(gridBagLayoutl);
127: jTextField_simTime.setText("") ;
128: jTextField_simTime.setHorizontalAlignment(SwingConstants.RIGHT);
129: jLabell.setFont(new Java.awt.Font("SansSerif", 0, 12));
130: jLabell.setHorizontalAlignment(SwingConstants.RIGHT);
131: jLabell.setText("Time Periods:");
132: jPanel3.setBorder(titledBorderl);
133: jLabel2.setText("Cell Resolution:");
134: jLabel2.setFont(new Java.awt.Font("SansSerif", 0, 12));
135: jLabel2.setHorizontalAlignment(SwingConstants.RIGHT);
136: jTextField_cellResolution.setText("");
137: jTextField_cellResolution.setHorizontalAlignment(SwingConstants.RIGHT);
138: jCheckBox_ShowTumorWindow.setText("Show Tumor");
139: jCheckBox_ShowTumorWindow.addActionListener(new Java.awt.event.ActionListen
140: public void actionPerformed(ActionEvent e) {
141: jCheckBox_ShowTumorWindow_actionPerformed(e);
142: }
143 : });
144: j Panel4.setLayout(gridBagLayout4);
145: jPanel4.setBorder(titledBorder2);
146: jRadioButton_xAxis.setText("X");
147: jRadioButton_xAxis.setSelected(true);
148: jRadioButton_xAxis.setEnabled(false);
149: jRadioButton_yAxis.setEnabled(false);
150: jRadioButton_zAxis.setEnabled(false);
151: jCheckBox_ShowTumorWindow.setEnabled(false);
152: jRadioButton_xAxis.addActionListener(new Java.awt.event.ActionListener() {
153: public void actionPerformed(ActionEvent e) {
154: jRadioButton_xAxis_actionPerformed(e);
155: }
156:));
157: jRadioButton_yAxis.setText("Y");
158: jRadioButton_yAxis.addActionListener(new Java.awt.event.ActionListener() {

159: public void actionPerformed(ActionEvent e) {
160: jRadioButton_yAxis_actionPerformed(e);
161: }
162: });
163: jRadioButton_zAxis.setText("Z");
164: jRadioButton_zAxis.addActionListener(new Java.awt.event.ActionListener() {
165: public void actionPerformed(ActionEvent e) {
166: jRadioButton_zAxis_actionPerformed(e);
167: }
168: });
169: j Panel6.setLayout(gridBagLayout2);
170: jPanel6.setBorder(titledBorder3);
171: jLabel3.setHorizontalAlignment(SwingConstants.RIGHT);
172: jLabel3.setFont(new Java.awt.Font("SansSerif", 0, 12));
173: jLabel3.setText("Window Resolution:");
174: jTextField_windowWidth.setText("");
175: jTextField_windowWidth.setHorizontalAlignment(SwingConstants.RIGHT);
176: jTextField_windowHeight.setText("");
177: jTextField_windowHeight.setHorizontalAlignment(SwingConstants.RIGHT);
178: jLabel4.setHorizontalAlignment(SwingConstants.CENTER);
179: jLabel4.setText("X");
180: jLabels.setText("Y");
181: jLabels.setHorizontalAlignment(SwingConstants.CENTER);
182: this.getContentPane().add(jPanell, BorderLayout.CENTER);
183: jPanell.add(jPanel3, new GridBagConstraints(1, 0, 1, 2, 1.0, 1.0
184: »GridBagConstraints.CENTER, GridBagConstraints.BOTH,
185: new Insets(0, 0, 3, 0), -5, -5));
186: jPanel3.add(jLabell, new GridBagConstraints(0, 0, 2, 1, 0.0, 0.0
187: .GridBagConstraints.WEST, GridBagConstraints.NONE,
188: new Insets(0, 47, 0, 0), 6, 0));
189: jPanel3.add(jLabel3, new GridBagConstraints (0, 2, 2, 1, 0.0, 0.0
190: ,GridBagConstraints.WEST, GridBagConstraints.NONE,

117

www.manaraa.com

191: new Insets(10, 6, 0, 0), 14, 0));
192: jPanel3.add(jTextField_windowWidth,
193: new GridBagConstraints(1, 3, 1, 1, 1.0, 0.0
194: ,GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
195: new Insets(0, 0, 4, 15), 25, 0));
196: jPanel3.add(jLabel2, new GridBagConstraints(0, 1, 2, 1, 0.0, 0.0
197: ,GridBagConstraints.WEST, GridBagConstraints.NONE,
198: new Insets(12, 16, 0, 0), 26, 0));
199: jPanel3.add(jLabel4, new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0
200: »GridBagConstraints.WEST, GridBagConstraints.NONE,
201: new Insets(0, 72, 4, 0), 7, 0));
202: jPanel3.add(jLabel5, new GridBagConstraints(2, 3, 1, 1, 0.0, 0.0
203: .GridBagConstraints.WEST, GridBagConstraints.NONE,
204: new Insets(0, 0, 4, 0), 8, 0));
205: j Panel3.add(j TextField_windowHeight,
206: new GridBagConstraints(3, 3, 1, 1, 1.0, 0.0
207: »GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
208: newlnsets(0, 0, 4, 2), 25, 0));
209: jPanel3.add(jTextField_cellResolution,
210: new GridBagConstraints(3, 1, 1, 1, 1.0, 0.0
211: .GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
212: new Insets(9, 0, 0, 2), 25, 0));
213: jPanel3.add(jTextField_simTime,
214: new GridBagConstraints(3, 0, 1, 1, 1.0, 0.0
215: .GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
216: new Insets(0, 0, 0, 2), 25, 0));
217: jPanell.add(jPanel4, new GridBagConstraints(2, 0, 1, 2, 1.0, 1.0
218: »GridBagConstraints.CENTER, GridBagConstraints.BOTH,
219: new Insets(0, 0, 3, 5), 1, 0));
220: jPanel4.add(jRadioBut ton_zAxi s,
221: new GridBagConstraints(2, 1, 1, 1, 0.0, 0.0
222: .GridBagConstraints.CENTER, GridBagConstraints.NONE,
223: new Insets(16, 0, 28, 2), 0, 0));
224: j Panel4.add(jCheckBox_ShowTumorWindow,
225: new GridBagConstraints(0, 0, 3, 1, 0.0, 0.0
226: »GridBagConstraints.CENTER, GridBagConstraints.NONE,
227: new Insets(4, 8, 0, 2), 5, 0)) ;
228: jPanel4.add(jRadioButton_xAxis,
229: new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0
230: »GridBagConstraints.CENTER, GridBagConstraints.NONE,
231: new Insets(16, 8, 28, 0), 0, 0));
232: jPanel4.add(jRadioButton_yAxis,
233: new GridBagConstraints(1, 1, 1, 1, 0.0, 0.0
234: .GridBagConstraints.CENTER, GridBagConstraints.NONE,
235: new Insets(16, 0, 28, 0), 0, 0));
236: jPanell.add(jPanel6, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0
237: .GridBagConstraints.CENTER, GridBagConstraints.BOTH,
238: new lnsets(0, 6, 0, 0), 0, 0));
239: jPanel6.add(jProgressBar_cellDoubles,
240: new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0
241: »GridBagConstraints.CENTER, GridBagConstraints.BOTH,
242: new Insets(0, 4, 1, 3), 37, -2));
243: jPanel6.add(jProgressBar_simTime,
244: new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0
245: »GridBagConstraints.CENTER, GridBagConstraints.BOTH,
246: new Insets(0, 4, 0, 3), 37, -2));
247: jPanell.add(jPanel2, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0
248: »GridBagConstraints.CENTER, GridBagConstraints.BOTH,
249: new Insets(0, 0, 3, 0), 22, 4));
250: jPanel2.add(stopButton, new GridBagConstraints(1, 0, 1, 1, 0.0, 0.0
251: ,GridBagConstraints.CENTER, GridBagConstraints.NONE,
252: new Insets(8, 15, 9, 34), 0, 0)) »•
253: jPanel2.add(startButton, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0
254: »GridBagConstraints.CENTER, GridBagConstraints.NONE,
255: new Insets(8, 23, 9, 0), 0, 0));
256: j PopupMenul.addSeparator();
257: jProgressBar_simTime.setStringPainted(true);
258: j ProgressBar_s imTime.s etMinimum (1);
259: jProgressBar_cellDoubles.setStringPainted(true);
260: jProgressBar_cellDoubles.setMinimum(1);
261: } // *** end jblinit ***
262:
263: // Overridden so we can exit on System Close.
264: protected void processWindowEvent(WindowEvent e) {

118

www.manaraa.com

265: super.processWindowEvent(e);
266: if(e.getIDO == WindowEvent.WINDOW_CLOSING) {
267: System.exit(0);
268: }
269: }
270:
271: // Start execution of the control panel by placing the simulation's default
272: // values (as received from the calling main application) into the panel's
273: // text fields. Next, the stop button is turned "off" (until the the
274: // simulation is started) and a new window is created. Note that the tumor
275: // tumor window is created but not visible. Visibility is set to false at
276: // the time of window instatiation so that it's not visible until "turned on"
277: //by the user.
278: void run(int xDim, int yDim, int simTime, int cellSize) {
279: jTextField_simTime.setText(Integer.toString(simTime));
280: jTextField_cellResolution.setText(Integer.toString(cellSize));
281: jTextField_windowWidth.setText(Integer.toString(xDim));
282: j TextField_windowHeight.setText(Integer.toString(yDim));
283: stopButton.setEnabled(false);
284: tumorWindow = new TumorWindow(xDim, yDim);
285: // Configure progress bars.
286: jProgressBar_simTime.setMinimum(l);
287: jProgressBar_simTime.setString("Period: ");
288: jProgressBar_simTime.setStringPainted(true);
289: jProgressBar_cellDoubles.setMinimum(l);
290: jProgressBar_cellDoubles.setStringPainted(true);
291: }
292:
293: // The following methods performs the specified actions when the control
294: // panel's "start" button is pressed.
295: void startButton_actionPerformed(ActionEvent e) {
296: // In case the user changed any of the default values for the simulation,
297: // obtain the values from all text fields in the control panel.
298: this.simTime = Integer.parselnt(this.jTextField_simTime.getText());
299: jProgressBar_simTime.setMaximum(simTime);
300: this.cellSize = Integer.parselnt(this.jTextField_cellResolution.getText());
301: this.windowWidth = Integer.parselnt(jTextField_windowWidth.getText());
302: this.windowHeight = Integer.parselnt(jTextField_windowHeight.getText());
303: tumorWindow.setSize(windowWidth, windowHeight);
304: // Reset window size to a multiple of cell size.
305: int windowWidth =
306: Math.max(tumorWindow.getWidthO, cellSize) / cellSize * cellSize;
307: int windowHeight =
308: Math.max(tumorWindow.getHeight(), cellSize) / cellSize * cellSize;
309: // Calculate the number of cells possible for the x and y directions.
310: cellWidth = windowWidth / cellSize;
311: cellHeight = windowHeight / cellSize;
312: cellDepth = (cellWidth + cellHeight)/2;
313: // Resize the applet window to a multiple of the scale value.
314: tumorWindow.setSize(windowWidth, windowHeight);
315: // Calculate coordinates for the cancer cell (middle of the growth space).
316: firstCellX = cellWidth / 2;
317: firstCellY = cellHeight / 2;
318: firstCellZ = cellDepth / 2;
319: // Instantiate the cancer tumor in its own thread, pass the parameters,
320: // and give the thread a name.
321: cancerTumor = new CancerTumor(simTime,
322: cellSize,
323: cellWidth,
324: cellHeight,
325: cellDepth,
326: firstCellX,
327: firstCellY,
328: firstCellZ);
329: startButton.setEnabled(false); // Simulation started; disallow new start.
330: stopButton.setEnabled(true); // Simulation started; allow to be stopped.
331: // *** por output to console only ***
332: System.out.printlnt"===");
333: System.out.printlnt"Tumor growth started with " +
334: simTime + " time units.");
335: System.out.printlnt"Cell resolution: " + cellSize + " (pixels)");
336: System.out.printlnt"Window resolution: " + cellWidth +
337: " x " + cellHeight + " (cells)");
338: System.out.println("First cell positioned at " +

119

www.manaraa.com

339: firstCellX + ", " + firstCellY + ", " + firstCellZ);
340: System.out.printIn("===") ;
341: // Start the simulation.
342: cancerTumor.start();
343: this.jCheckBox_ShowTumorWindow.setEnabled(true);
344: }
345:
346: // The following methods performs the specified actions when the control
347: // panel's "stop" button is pressed.
348: void stopButton_actionPerformed(ActionEvent e) {
349: cancerTumor.setStop(true); // Suspend execution of the cancer tumor.
350: startButton.setEnabled(true);
351: stopButton.setEnabled(false);
352: }
353:
354: // The following method performs the specified actions when the control
355: // panel's Show tumor checkbox is selected.
356: void jCheckBox_ShowTumorWindow_actionPerformed(ActionEvent e) {
357: if (jCheckBox_ShowTumorWindow.isSelected()) {
358: if (jRadioButton_xAxis.isSelected()) {
359: jRadioButton_xAxis_actionPerformed(e);
360: }
361: else if (jRadioButton_yAxis.isSelected()) {
362: jRadioButton_yAxis_actionPerformed(e);
363: }
364: else if (jRadioButton_zAxis.isSelected()) {
365: jRadioButton_zAxis_actionPerformed(e);
366: }
367: tumorWindow.setVisible(true);
368: jRadioButton_xAxis.setEnabled(true);
369: jRadioButton_yAxis.setEnabled(true);
370: jRadioButton_zAxis.setEnabled(true);
371: }
372: else {
373: jRadioButton_xAxis.setEnabled(false);
374: jRadioButton_yAxis.setEnabled(false);
375: jRadioButton_zAxis.setEnabled(false);
376: tumorWindow.setVisible(false);
377:
378: }
379: }
380:
381: // The following method performs the specified actions when the control
382: // panel's "X Axis" radio button is pressed.
383: void jRadioButton_xAxis_actionPerformed(ActionEvent e) {
384: jRadioButton_xAxis.setSelected(true);
385: tumorWindow.setTitle(tumorWindow.WINDOW_TITLE + "X Axis");
386: jRadioButton_yAxis.setSelected(false);
387: jRadioButton_zAxis.setSelected(false);
388: tumorWindow.repaint(cancerTumor.getFaceXO,
389: cellSize, cellWidth, cellHeight, cellDepth);
390: }
391:
392: // The following method performs the specified actions when the control
393: // panel's "Y Axis" radio button is pressed.
394: void jRadioButton_yAxis_actionPerformed(ActionEvent e) {
395: jRadioButton_xAxis.setSelected(false);
396: jRadioButton_yAxis.setSelected(true);
397: tumorWindow.setTitle(tumorWindow.WINDOW_TITLE + "Y Axis");
398: tumorWindow.panel.repaint();
399: jRadioButton_zAxis.setSelected(false);
400: tumorWindow.repaint(cancerTumor.getFaceY(),
401: cellSize, cellWidth, cellHeight, cellDepth);
402: }
403:
404: // The following method performs the specified actions when the control
405: // panel's "Z Axis" radio button is pressed.
406: void jRadioButton_zAxis_actionPerformed(ActionEvent e) {
407: jRadioButton_xAxis.setSelected(false);
408: jRadioButton_yAxis.setSelected(false);
409: jRadioButton_zAxis.setSelected(true);
410: tumorWindow.setTitle(tumorWindow.WINDOW_TITLE + "Z Axis");
411: tumorWindow.repaint(cancerTumor.getFaceZ(),
412: cellSize, cellWidth, cellHeight, cellDepth);

120

www.manaraa.com

413:
414: }

Package Name

Tumor04_2

Class Name
TumorWindow

Source Filename

TumorWindow.j ava

{ See Appendix A, TumorWindow.Java }

Package Name
Tumor04 2

Class Name
CellRules

Source Filename
CellRules.Java

l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
exi
37
38
39
40
41
42
43
44
45
46
47
48
49
50

/*
Title : CellRules
Version....: 1.0
Copyright..: Copyright (c) 1999, 2000
Author : Capt Bruce C Jenkins (GOA-00M)
Company....: Air Force Institute of Technology
Description: This class is intended to contain most of the rules that will
describe the behavior of individual cancer cells or even the tumor itself.

Modification history:

Version 1.0 (18 Jan 2000)
- This initial version implements a subset of the rules outline by Palmari, et

al, in a paper entitled "Topographical analysis of spatial patterns generated
by a cellular automaton model of the proliferation of a cancer cell line in
vitro."

*/

package Tumor04_2;

import drasys.or.prob.NormalDistribution;
import j ava.util.Random;

public class CellRules {

// Determine if the cancer cell under consideration is ready to divide.
// Inputs: Cancer cell object.
// Return: Boolean value that "yes," the cell is ready to divid, or "no" it
// is not ready to divide.
static public boolean canDivide(CancerCell theCell) {

int growthPhase;
boolean cellStatus =
double rNum;

// Growth phase of cell under consideration,
false; // Attribute to be returned by this method.

// Random number returned from distribution.

// First check if the cellError! Bookmark not defined, is alive. If not,
immediately.

if (!theCell.getlsAlivef)) {
return cellStatus;

}
else {

// The cell is being "polled" by the system, so increment the age and
// the time spent in the current phase.
int theAge = theCell.getAge();
theCell.setAge(++theAge);
int theTime = theCell.getTimeInPhase();
theCell.setTimeInPhase(++theTime);
growthPhase = theCell.getGrowthPhase ();
NormalDistribution myDist;
// Based upon current growth phase, take the appropriate action.
switch (growthPhase) {

121

www.manaraa.com

51: case 1: // Gap 1 (Gl).
52: if (theCell.getTimelnPhaseO >= theCell.getMaxTimelnPhase(1)) {
53: theCell.setGrowthPhase((byte)2); // Go to S
54: }
55: break;
56: case 2: // Synthesis (S).
57: if (theCell.getMaxTimelnPhase(2) == 0) {
58: myDist = new NormalDistribution(7, 0.75);
59: rNum = Math.round(myDist.getRandomScaler());
60: theCell.setMaxTimelnPhase(2, (int)rNum);
61: }
62: else if (theCell.getTimelnPhaseO >= theCell.getMaxTimelnPhase(2))
63: theCel1.setGrowthPhase((byte)3); // Go to G2
64: }
65: break;
66: case 3: // Gap 2 (G2).
67: if (theCell.getMaxTimelnPhase(3) == 0) {
68: myDist = new NormalDistribution(8, 0.75);
69: rNum = Math.round(myDist.getRandomScaler0);
70: theCell.setMaxTimelnPhase(3, (int)rNum);
71: }
72: else if (theCell.getTimelnPhaseO >= theCell.getMaxTimelnPhase(3))
73: theCell.setGrowthPhase)(byte)4); // Go to M
74: }
75: break;
76: case 4: // Mytosis (M)
77: if (theCell.getMaxTimelnPhase(4) == 0) {
78: myDist = new NormalDistribution(1.5, 0.5);
79: rNum = Math.round(myDist.getRandomScaler());
80: theCell.setMaxTimelnPhase(4, (int)rNum);
81: }
82: else if (theCell.getTimelnPhaseO >= theCell.getMaxTimelnPhase(4))
83: rNum = Math.random();
84 : cellStatus = true;
85: }
86: break;
87: } // end switch
88: } // end else
89: return cellStatus;
90: } // end canDivide
91:) // end CellRules

Package Name Class Name Source Filename
Tumor04_2 DataManagement DataManagement.java

1: /"
2: Title....
3: Version..
4: Copyright
5: Author...
6: Company..
7: Description

DataManagement
1.0
Copyright (c) 2000
Capt Bruce C Jenkins (GOA-00M)
Air Force Institute of Technology
This class is designed to handle the I/O for data generated by the

8: CancerSim application. It is intended that calls to this package be made from
9: the CancerTumor class, but there is nothing to prevent calls from being made

10: from any other class.
11:
12: Modification history:
13:
14: Version 1.0 (29 Jan 2000)
15: - Class creation and implementation of print method.
16:
17: */
18:
19: package Tumor04_2;
20:
21: import java.io.*;
22: import java.util.*;

122

www.manaraa.com

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:

public class DataManagement {

private final String FILENAME = "SimData.txt"; // Default data filename.

cancerSimDataFile;
fileOutputStream;
fileOut;
fileOK;

//
//
//
//

File handle.
Output stream handle.
Print stream handle.
Error detection flag.

private File
private FileOutputStream
private PrintStream
private boolean

// Construct the class,
public DataManagement() {}

// Establish the I/O data streams.
// Inputs: None.
// Return: n/a
private void init() {

try { // Open the file.
cancerSimDataFile = new File(FILENAME);
fileOutputStream = new FileOutputStream(cancerSimDataFile);
fileOut = new PrintStream(fileOutputStream);
fileOK = true;

}

}
catch (IOException e) {

System.out.println("I/O error:
fileOK = false;

}

+ e. toStringO) ,

// Send data to standard output device.
// Inputs: Collection of objects.
// Return: n/a
public void printToFile(Collection dataList) {

init();
Iterator list = dataList.iterator();
if (fileOK) {

while (list.hasNextO) {
fileOut.print(list.next() + "\t");

}
}
try {

fileOut.close ();
)
catch (Exception e) {

System.out.printlnf"Possible file error:
}

}

+ e.toString());

123

www.manaraa.com

Glossary

Average risk: A measure of the chances of getting breast cancer without the presence of
any specific factors known to be associated with the disease.

Benign: Not malignant, not cancerous; cannot invade neighboring tissues or spread to
other parts of the body.

Benign breast changes: Noncancerous changes in the breast. Benign breast conditions
can cause pain, lumpiness, nipple discharge, and other problems.

Biopsy: Removal of a sample of tissue or cells from the body to assist in diagnosis of a
disease.

BRCA1 and BRCA2 genes: The principal genes that, when altered, indicate an inherited
susceptibility to breast cancer. These gene alterations are present in 80 to 90 percent of
hereditary cases of breast cancer.

Breast density: Glandular tissue in the breast common in younger women, making it
difficult for mammography to detect breast cancer.

Calcification: The deposition of calcium salts in body tissues. In the breast, it can be
associated with either normal or cancerous tissue.

Cancer: A general name for more than 100 diseases in which abnormal cells grow out of
control. Cancer cells can invade and destroy healthy tissues, and they can spread through
the bloodstream and the lymphatic system to other parts of the body.

Carcinoma: A malignant tumor arising from epithelial cells, which are cells lining the
external or internal surfaces of the body. Carcinomas spread to nearby tissues. They may
also spread to distant sites such as lung, liver, lymph nodes and bone. See also metastasis

Carcinoma in situ: A malignant tumor that has not yet become invasive but is confined
to the layer of cells from which it arose. A form of pre-invasive cancer.

Carcinoma NOS: Invasive ductal carcinoma not otherwise specified. Comprises 70 per
cent of all breast cancers.

Centigray: A measure of radiation. 1 centigray = 1 rad.

Chemotherapy: The use of medications (drugs) that are toxic to cancer cells. These
drugs kill the cells, or prevent or slow their growth.

Chromosome: A body in the cell nucleus carrying genes.

124

www.manaraa.com

Clinical breast exam: A physical examination by a doctor or nurse of the breast,
underarm, and collarbone area, first on one side, then on the other.

Clinical trial: Research conducted with the patient's permission that usually involves a
comparison of two or more treatments or diagnostic methods. The aim is to gain better
understanding of the underlying disease process and/or methods to treat it.

Computed tomography (CT) scanning: An imaging technique that uses a computer to
organize the information from multiple x-ray views and construct a cross-sectional image
of areas inside the body.

Computer-aided diagnosis (CAD): The use of special computer programs to scan
mammographic images and flag areas that look suspicious.

Core biopsy: The sampling of breast tissue with a needle to give a tiny cylinder or core
of tissue for examination by a pathologist.

Cyclic breast changes: Normal tissue changes that occur in response to the changing
levels of female hormones during the menstrual cycle. Cyclic breast changes can
produce swelling, tenderness, and pain.

Diagnostic mammogram: The use of a breast x-ray to evaluate the breasts of a woman
who has symptoms of disease such as a lump, or whose screening mammogram shows an
abnormality.

Differentiation: The degree to which a tumour resembles normal tissue. In general, the
closer the resemblance, the better the prognosis. Well-differentiated tumours closely
resemble normal tissue.

Digital mammography: A technique for recording x-ray images in computer code,
which allows the information to enhance subtle, but potentially significant, changes.

Disease-free survival: The time from the primary treatment of the breast cancer to the
first evidence of cancer recurrence.

Ducts: Channels that carry body fluids. Breast ducts transport milk from the breast's
lobulesError! Bookmark not defined, out to the nipple during breastfeeding.

Ductal carcinoma in situ (DCIS): A form of breast cancer that requires special
consideration. It spreads along the ducts of the breast, rather than forming a lump.

Excisional biopsy: The surgical removal (excision) of an abnormal area of tissue, usually
along with a margin of healthy tissue, for microscopic examination. Excisional biopsies
remove the entire lump from the breast.

125

www.manaraa.com

False negative (mammograms): Breast x-rays that miss cancer when it is present.

False positive (mammograms): Breast x-rays that indicate the presence of breast cancer
when the disease is truly absent.

Familial breast cancer Breast cancer affecting two or more close relatives, especially in
premenopausal women. It implies an inherited disposition.

Fat necrosis: Lumps of fatty material that form in response to a bruise or blow to the
breast.

Fibroadenoma: Benign breast tumor made up of both structural (fibro) and glandular
(adenoma) tissues.

Generalized breast lumpiness: Breast irregularities and lumpiness, commonplace and
noncancerous. Sometimes called "fibrocystic disease" or "benign breast disease."

Higher risk (for breast cancer): A measure of the chances of getting breast cancer when
factor(s) known to be associated with the disease are present.

Histology: An examination of the structure of a cell by a pathologist.

Hormones: Chemicals produced by various glands in the body, which produce specific
effects on specific target organs and tissues.

Hyperplasia: Increased numbers of epithelial cells. If excessive, there is a slightly
increased risk of developing subsequent breast carcinoma. Several types of benign breast
conditions involve hyperplasia.

Infiltrating cancer: Cancer that has spread to nearby tissue, lymph nodes under the arm,
or other parts of the body. (Same as Invasive cancer.)

Intraductal papilloma: A small wartlike growth that projects into a breast duct.

Invasive cancer: Cancer that has spread to nearby tissue, lymph nodes under the arm, or
other parts of the body. (Same as Infiltrating cancer.)

Laser beam scanning: a technology being studied in research for breast cancer detection
that shines a laser beam through the breast and records the image produced, using a
special camera.

LCIS Lobular carcinoma in situ: It is a misnomer that describes a benign process in the
breast. It is not a carcinoma. It is usually detected by chance in the course of a breast
biopsy for another lesion.

126

www.manaraa.com

Lobes, lobules, bulbs: Milk-producing tissues of the breast. Each breast's 15 to 20 lobes
branches into smaller lobules, and each lobule ends in scores of tiny bulbs. Milk
originates in the bulbs and is carried by ducts to the nipple.

Localization biopsy: The use of mammography to locate tissue containing an
abnormality that can be detected only on mammograms, so it can be removed for
microscopic examination.

Lumpectomy: Surgical removal of a lump from the breast; usually followed by radiation
therapy.

Lymphatic system: A system of vessels which drains fluid out of the head, neck and
limbs and returns it to the general circulation. The tissues and organs that produce, store,
and transport cells that fight infection and disease.

Lymph node: A small collection of tissue along the lymphatic system that acts as a filter.
White cells and cancer cells, in particular, collect in lymph nodes. They are found in the
neck, the armpit, the groin and many other places. Lymph nodes are also known as
glands.

Macrocalcifications: Coarse calcium deposits. They are most likely due to aging, old
injuries or inflammations and usually are associated with benign conditions.

Magnetic resonance imaging (MRI): A technique that uses a powerful magnet linked to
a computer to create detailed pictures of areas inside the body.

Malignant: A tumour having the capacity to destroy tissue locally, spread, and cause
death.

Malignancy: State of being cancerous. Malignant tumors can invade surrounding tissues
and spread to other parts of the body.

Mammogram: A soft tissue x-ray of the breast, which may be used to evaluate a lump,
or which may be used as a screening test in women with no signs or symptoms of breast
cancer.

Mammography: The examination of breast tissue using x-rays. The process of taking a
mammogram.

Mastitis: Infection of the breast. Mastitis is most often seen in nursing mothers.

Medical oncologist: A doctor who specialises in the use of chemotherapy and hormone
therapy.

127

www.manaraa.com

Metastasis: The spread of a cancer from the primary site to somewhere else via the
bloodstream or the lymphatic system.

Microcalcifications: Tiny deposits of calcium in the breast, which can show up on a
mammogram. Certain patterns of microcalcifications are sometimes a sign of breast
cancer.

Mitosis: The process of cell division.

Mutation: A change in the number, arrangement, or molecular sequence of a gene.

Necrosis: The death of an individual cell or groups of cells in living tissue. Sometimes
seen in carcinomas.

Needle biopsy: Use of a needle to extract cells or bits of tissue for microscopic
examination.

Nodal status: The presence or absence of cancer in the lymph nodes of the armpit. A
woman with cancer in one or more nodes is node positive, or node +ve. A woman with
no cancer in her nodes is node negative, or node -ve.

Nonpalpable cancer: Cancer in breast tissue that can be seen on mammograms but that
cannot be felt.

Oncogene: A gene which, functioning abnormally, encourages normal cells to turn
cancerous.

Oncologist: A doctor who specialises in treating cancer.

Oncology: The study of the biology and physical and chemical features of cancers. Also
the study of the cause and treatment of cancers.

Oncology nurse: A registered nurse who is educated in the care of people with cancer.

Overall survival: The time from the primary treatment of the breast cancer to death.

p53: A protein which, when the gene for it is damaged, leads to an increased risk of
breast cancer.

Palliation: The alleviation of symptoms due to the underlying cancer, without prospect
of cure.

Palpation: Use of the fingers to press body surfaces, so as to feel tissues and organs
underneath. Palpating the breast for lumps is a crucial part of a physical breast
examination.

128

www.manaraa.com

Primary breast tumor: Tumor arising in the breast.

Prognosis: An estimate of what is likely to happen in the future.

Prognostic factors: Factors that are associated with a better or worse outcome of the
disease. They are not the same as causes.

Progression: The continuing growth of the cancer.

Prophylactic mastectomy: Surgery to remove a breast that is not known to contain
breast cancer, for the purpose of reducing an individual's cancer risk.

Rad: An old unit of radiation, which stands for radiation absorbed dose, and is
superseded by the Gray. 1 Gray =100 rads.

Radiation: Energy carried by waves or by streams of particles. Various forms of
radiation can be used in low doses to diagnose disease and in high doses to treat disease.
See X-rays.

Radiation oncologist: A doctor who specializes in treating cancer with radiation. Also
known as a radiotherapist.

Radiographer: A technician who gives radiotherapy prescribed by a radiation
oncologist.

Radiologist: A doctor with special training in the use of x-rays (and related technologies
such as ultrasound) to image body tissues and to treat disease.

Radiotherapy: The use of radiation, usually x-rays or gamma rays, to kill tumour cells.

Remission: A reduction or disappearance of the symptoms of cancer. It can be partial or
complete.

Risk: A measure of the likelihood of some uncertain or random event with negative
consequences for human life or health.

Risk factors (for cancer): Conditions or agents that increase a person's chances of
getting cancer. Risk factors do not necessarily cause cancer; rather, they are indicators,
statistically associated with an increase in likelihood.

Screening mammogram: Breast x-ray used to look for signs of disease such as cancer in
people who are symptom-free.

129

www.manaraa.com

Secondary tumor: A deposit of breast cancer away from the breast (such as in the lung,
bone or lymph node). See metastasis.

Segmentectomy: The excision of an entire segment of the breast.

Sonogram: The image produced by ultrasound.

Sonographer: A technician trained in performing ultrasounds.

Specimen X-ray: An X-ray of a surgically removed specimen to confirm that a
mammographically detected cancer has been removed.

Staging: Refers to the allocation of categories (0,1, n, HI, IV) to groupings of tumours
defined by internationally agreed criteria. Staging helps determine treatment and
prognosis.

Stereotactic localization biopsy: A technique that employs three-dimensional x-ray to
pinpoint a specific target area. It is used in conjunction with needle biopsy of
nonpalpable breast abnormalities.

Tumor: An abnormal growth of tissue. It may be localized (benign) or invade nearby
tissues (malignant) or distant tissues (metastatic).

Tumor suppressor gene: A gene that usually prevents cancers growing. When it is not
functioning normally, tumurs can grow. Examples include p53 in breast cancer, RB
protein in retinoblastoma and possibly BRCA1 in breast cancer. Also known as an anti-
oncogene.

Tumor type: The overall cell pattern of the tumor.

Ultrasound: The use of sound waves to form a picture of internal tissues.

Vascular infiltration: Invasion by cancer cells of lymphatics or veins. It is a sign that
the tumor is likely to spread.

X-ray: A high-energy form of radiation. X-rays form an image of body structures by
traveling through the body and striking a sheet of film. Breast x-rays are called
mammograms

130

www.manaraa.com

Bibliography

Barton, Mary B., Russell Harris, and Suzanne W. Fletcher. "Does This Patient Have
Breast Cancer?" Journal of the American Medical Association (JAMA), 212 (13):
1270-1280 (06 Oct 1999).

Bassham, Christopher B. Visualizing Early-Stage Breast Cancer Tumors in a
Mammographic Environment Through a 3-Dimensional Mathematical Model, MS
Thesis, AFIT/GOA/ENS/99M-01, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, March 1999.

—. Computer Visualization of Breast Cancer Tumor Models. Specialty Study, Air
Force Institute of Technology (AU), Department of Operational Sciences, Wright-
Patterson AFB OH, June 1999.

"Breast Cancer—Early Detection is Helping Save Lives," Chain Drug Review, 21 (6): 5
(15 March 1999).

Coffey, Donald S. "Self-organization, Complexity and Chaos: The New Biology for
Medicine." Article, n. pag. http://medicine.snu.ac.kr/CGMS/self.html. 10 April
1999.

"Computers May Help Radiologists Detect Breast Cancer," Women's Health Weekly (14
June 1999).

Davis, P.L. and K.S.McCarty, Jr. "Sensitivity of Enhanced MRI for the Detection of
Breast Cancer: New, Multicentric, Residual, and Recurrent," European Radiology,
1997: 7 (Supp. 5): S289-S298.

"Digital Mammography Has Promising Future," Women's Health Weekly (14 June
1999).

"FDA Approves New Breast Cancer Imaging Device," Food and Drug Administration
Talk Paper: T99-18 (19 April 1999).

Hayes, Daniel F., ed. Atlas of Breast Cancer. Hong Kong: Mosby Europe Ltd., 1993.

"Insight Awards to Stamp Out Breast Cancer," National Cancer Institute: PAR-99-128
(13 July 1999).

Iynegar, S. Sitharama. Computer Modeling of Complex Biological Systems, Boca Raton,
FL: CRC Press, 1984.

131

www.manaraa.com

"MRI Detects Breast Tumors Missed by Mammography," Reuters Health excerpt from
Radiology. 1999; 212: 543-549.
http://www.oncolink.upenn.edu/cancer news/reuters/1999/iul/cl07299n.html (29
July 1999).

"MRI Tops Mammogram, Ultrasound in Detecting Rare Cancer," Medical Industry
Today. Medical Data International, Inc. (11 May 1999).

"MRI vs. Mammography and Ultrasound for Cancer," Women's Health Weekly (10 May
1999).

Müller, Pierre-Alain. Instant UML. Birmingham, UK: Wrox Press Ltd., 1997.

National Cancer Institute (U.S.). Office of Cancer Communications. The Breast Cancer
Digest: A Guide to Medical Care, Emotional Support, Educational Programs, and
Resources (DHHS/NIH 84-1691). 2nd ed. Bethesda, MD: U.S. National Cancer
Institute, 1984.

—. The National Strategic Plan for the Early Detection and Control of Breast and
Cervical Cancers. Atlanta, GA: U.S. Dept. of Health and Human Services, Public
Health Services, Centers for Disease Control and Prevention, 1993.

"New York Hospital Offers Advanced Cancer Detection," Cancer Weekly Plus, (08
February 1999).

Palmari, Jacqueline, et al. "Topographical Analysis of Spatial Patterns Generated by a
Cellular Automaton Model of the Proliferation of a Cancer Cell Line in Vitro"
Analytical Cellular Pathology. 1997: 14: 75-86.

Pitot, Henery C. Fundamentals of Oncology. New York: Marcel Dekker, Inc., 1978.

Pressman, Roger S. Software Engineering: A Practitioner's Approach, 4e. New York:
McGraw-Hill, 1997.

Rosner, B. and G.A. Colditz. "Nurses' Health Study: Log-incidence Mathematical Model
of Breast Cancer Incidence," Journal of the National Cancer Institute, 1996; 88: 359-
364.

Saarela, A.O., et al. "Mammographic and Ultrasonographic Findings in Bilateral Breast
Cancer: A Comparative Study," European Radiology, 1998; 8: 634-638.

Saltus, Richard. "Cancer: Turning the Corner: New Drugs, New Hope," The Boston
Globe, 03 August 1999.

Schroeder, Will, Ken Martin, and Bill Lorensen. The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics. Upper Saddle River, New Jersey: Prentice Hall
PTR, 1996.

132

www.manaraa.com

Schwab, E. D. and K. J. Pienta. "Cancer as a Complex Adaptive System." Excerpt from
Medical Hypothesis; 1996; 47: 235-241.
http://medicine.snu.ac.kr/CGMS/CANCER.html (14 April 1999).

Simonetti, Giovanni, et al. "What's New in Mammography," European Journal of
Radiology. 1998; 27: S234-S241.

"Stages of Breast Cancer Development: Normal to Metastatic Disease," National Cancer
Institute Public Affairs Release: PA-99-162 (02 September 1999).

Tan, Wai-Yuan. Stochastic Models of Carcinogenesis. New York: Marcel Dekker, Inc.,
1991.

Voiculetz, Nicolae, et al. Modeling of Cancer Genesis and Prevention. Boston: CRC
Press, 1991.

133

	An Object-oriented Approach to the Modeling and Visualization of Breast Cancer Tumors
	Recommended Citation

	/tardir/tiffs/a378242.tiff

